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To determine the uncertainty in the results of a 

single-channel measurement, one must con-

sider the contributions from both the sensor’s 

uncertainty and the uncertainty of the meas-

urement channel. Results from multiple meas-

urement channels face even greater complica-

tions. This White Paper explains the theoretical 

background for, as well as the practical steps 

taken to handle these multi-channel measure-

ment uncertainties. 

 

The definition of error;  

absolute and relative error 

We begin by reviewing how error is defined. 

We will restrict our discussion here to system-

atic errors, to the exclusion of random errors. 

Systematic errors characteristically are of a 

specific size and sign. Knowledge of this error 

enables the measured value to be corrected. In 

terms of error types, there is a distinction 

between the absolute error and the relative 

error.  

The (absolute) error is defined by: 

 

 

 

with XA  = value indicated and XW = true value 

or expected reading. The difficulty of the 

matter is that a quantity’s true value is typically 

not known. The true value can sometimes be 

computed, but if this is not the case, the true 

value often can be substituted with a value 

found using a reliable, high precision instru-

ment. 

 

For instance, an error of 1V may seem like a 

large amount. But it is only possible to make an 

assessment when the true size of the meas-

ured value is known. If it is 10V, then 1V is 

relatively large (10%); but if the true measure-

ment value is 1000V, then an absolute error of 

1V is relatively small (0.1%). Thus, the relative 

error is defined as: 

 

 

 

Error propagation 

If a measurement result is 

formed from multiple measured values, the 

individual errors associated with each meas-

ured value all affect the overall measurement 

result. 

Estimating error in multiplication of 

measured values  

Example: Measurement of apparent power. 

The error propagation can be illustrated by the 

case of an apparent power measurement, S, 

which is the multiplication of the two meas-

urement quantities voltage U and current I, S = 

U I. The measurement instrument in this ex-

ample has a 0.5% error, or 0.5% of the input 

value limit, for the voltmeter and 1.0% for the 

ammeter. 

 

 

The graphic helps to illustrate how the area ΔS, 

which results from the errors ΔU and ΔI, is: 

 

ΔS = UΔI + IΔU + ΔIΔU 

 

Where S + ΔS = (U + ΔU) (I + ΔI) follows our 

basic power calculation. If the errors are suffi-

ciently small, then ΔUΔI can be neglected by 

comparison with the other summands. The 

relative error is computed by dividing by S = U I 

 

This result indicates that multiplication of 

measurement values implies addition of the 

relative errors. This is of general validity for 

measurement quantities combined by multipli-

cation. Now we wish to express the relative 
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error in terms of the accuracy rating by means 

of the guaranteed error margins. If the size and 

sign of the systematic error are known, an 

incorrect result can be corrected. 

Letting UE and IE be the input limits of the 

measurement channels, and Kl be the relative 

error, the errors ΔU and ΔI are expressed as: 

 

 

 

Thus, the relative error in the apparent power 

is calculated as: 

 

 

 

This result indicates that the minimum error 

amounts to the addition of accuracy ratings 

(addition of the %-values). The condition for 

this is that U = UE and I = IE: the minimum error 

can only be achieved if the measured channels 

are operating at the peak of their range. So 

what applies to “old style” classical measure-

ment devices continues to apply to modern 

measurement devices: to attain the minimum 

relative error, the fullest possible signal 

strength should be applied to the measure-

ment channel. With measurement devices 

from imc, most measurement channels have 

an error limit of 0.1% of the input range limit, 

or a so-called Class 0.1, where the class specifi-

cation (e.g., 0.1) typically signifies an error of 

the corresponding percentage (± 0.1%) of the 

input range end value.  

A further example shall serve to clarify the 

mathematical background. Consider the de-

termination of the voltage drop across a resis-

tor whose resistance value of 1Ω, which we 

treat as absolutely accurate. The power is then 

calculated as P=U2/R.  

The power is thus P=(12V)2/1Ω=144 W. The 

voltage was measured as 12V, on a 20V range 

with an error of 1%. Thus, the possible error is 

computed as ΔU=0.2V. We seek the error in 

the power measurement ΔP. The graphs below 

show the error in the power ΔP as determined 

for different voltage values U1 and U2 but the 

same voltage error ΔU. 

 

 

 

Measurement of the voltage U1 with the error 

ΔU leads to the error ΔP1. 

 

 

 

 

Measurement of the voltage U2 with identical 

ΔU leading to a much greater error ΔP2. 

As the figure above shows, the very same error 

size ΔU in both voltages U1 and U2 leads to 

completely different errors in the power ΔP1 

and ΔP2. Evidently the size of the error in the 

power depends not only on the size of the 

measurement error ΔU, but also on the value 

of the voltage itself. This is in consequence of 

the quadratic relationship between the meas-

ured quantity U and the result quantity P. In 

other words, the error in the power depends 

on the slope of the curve at the measured 

value. The slope is expressed mathematically 

as: 

 

 

 

Generalizing from infinitesimally small magni-

tudes dP and dU to finite magnitudes ΔP and 
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ΔU, the increase of the function P from the 

equation above is seen to be calculated as: 

 

 

 

In this particular case, the error is: 

 

 

 

As is evident, the increase in a function’s value 

can be computed by multiplying the slope with 

the change in the measured variable.  

If n measurement quantities x1, x2,...,xn are 

combined to form a calculated result 

y=y(x1,x2,...,xn) and the systematic errors Δx1,..., 

Δxn are relatively small, then the total differen-

tial can be used to determine the error Δy. 

 

 

 

Thus, if multiple measurement quantities are 

present, the slope ratios: 

 

of the individual measurement quantities are 

multiplied with the respective quantities rela-

tive error, and the resulting contributions of 

each individual quantity are added. The sym-

bols ∂ in the equation above refer to partial 

derivatives. The method of partial differentia-

tion is identical to differentiation with one 

variable, except that all other variables are 

regarded as constants.  

The example of apparent power measurement 

presented above is thus computed as follows: 

S = U I = S(U,I) 

  

S corresponds to y  

U corresponds to x1  

I corresponds to x2 

 

 

 

This result is identical with the result previously 

obtained graphically. 

 

Certain and probable error margins  

The total margin of error can be determined 

accordingly, if G1 through Gn are the margins of 

error of the individual measurement quantities 

(corresponding to ΔU and ΔI in the example 

above): 

 

 

 

GyS is the result’s error margin. 

Since in practical terms it is improbable for the 

errors of all the quantities to coincide at the 

same (either the positive or negative) error 

margin, it is unlikely for the outer regions of 

the certain error margin to be reached. For this 

reason, the probable error margin GyW is addi-

tionally defined. 

 

 

 

Error estimation for complex formulas  

Example: Computing a drag coefficient. 

As a final example, we will examine the drag 

coefficient CW of a motor vehicle. In a wind 

tunnel, the air velocity v, air density ρ and 

resistance force F are measured. The frontal 

area A is optimized. The equation for compu-

ting the resistance force is: 
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The cW-value and its certain error margins are 

to be determined. With imc measurement 

instruments, the cW-value can be calculated 

from the measured quantities in real time 

using the digital signal processor accessible 

through imc Online FAMOS. First, we solve for 

the cW-value from its functional relationship 

with the force F. The result of this operation is: 

 

 

 

Thus the maximum error for the cW-value with 

the total differential is computed as: 

 

 

 

Given the functional relationship, the computa-

tion produces: 

 

 

 

 

 

 

 

 

 

 

The following values were measured: F = 200 

N; ρ = 1.2 kg/m3; v = 150 m/s; A = 400 cm2. 

The calculation of the nominal value for cW, 

applying the identity 1N=1kg m/s², yields: 

 

 

 

The missing maximum errors ΔF, Δρ, etc. for 

the measured physical quantities comprise the 

errors of the sensors and the measurement 

channel errors. The measurement of the force 

provides an occasion to further examine the 

error. The force sensor itself has a maximum 

error of 0.1% of the 250N input range, and it is 

connected to the imc CRONOS-PL measure-

ment system. The maximum error occurring in 

the measurement channel in the 250N input 

range (associated with the full scale of the 

channel’s capacity) is also rated at 0.1% of the 

input range’s upper limit.  

Since the sensor and measurement channel are 

multiplied with each other, the relative errors 

add (see the above example of determining the 

apparent power) and the maximum error in 

the force is 0.2% of 250 N, in other words 0.5 

N. Correspondingly, the maximum errors of the 

other quantities are calculated as Δρ=0.0025 

kg/m³; Δv=0.4m/s; ΔA=0.05cm². 

Calculation of the error yields: 

 

for the maximum absolute error. Applying the 

values provided, we obtain the resulting error 

as: 
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Dividing the error ±ΔcW by cW, the maximum 

relative error based on the measurements is 

given by: 

 

 

Probable and certain margins of error  

In this example, although the relative error in 

the individual measurement channels (in 

relation to their input ranges) is only 0.1% or 

better, the margin of error for the calculated 

measurement result is no better than 1%. And 

this even assumes that no additional error 

factor is incurred as a result of processing with 

imc Online FAMOS, which in this case is indeed 

fair to assume. The relative error in the velocity 

impacts the overall relative error twice as 

strongly due to its quadratic relationship to the 

result. Another insight to be gained is that the 

measurement channels should carry signals as 

near as possible to their maximum capacity 

level, in order to keep the relative error low. 

The calculated error represents a certain 

(guaranteed) margin of error. As indicated 

above, the probable margin of error can also 

be computed, which in our cases comes to: 

 

 

 

corresponding to a relative error of 0.63%. The 

advantage of knowing this specification of the 

error is that it  approximates the actual error 

level much better than the certain error margin 

of 1%. The drawback is, however, that it is not 

possible to state the probability that the error 

is no greater than 0.63%. To be on the safe 

side, the certain error margin must be calculat-

ed. 
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Additional information:  

imc Test & Measurement GmbH 

Voltastr. 5 

13355 Berlin, Germany 

Telephone: +49 (0)30-46 7090-0 

Fax:  +49 (0)30-46 31 576 

E-mail:  hotline@imc-tm.de 

Internet: http://www.imc-tm.com

imc Test & Measurement GmbH is a manufacturer 

and solution provider of productive test and meas-

urement systems. imc implements metrological 

solutions for research, development, service and 

production. imc has particular expertise in the 

design and production of turnkey electric motor 

test benches. Precisely outfitted sensor and telem-

etry systems complement our customer applica-

tions. 

Our customers from the fields of automotive engi-

neering, mechanical engineering, railway, aero-

space and energy use imc measurement devices, 

software solutions and test stands to validate pro-

totypes, optimize products, monitor processes and 

gain insights from measurement data. As a solution 

provider, imc offers their customers an attractive 

and comprehensive range of services. These in-

clude project consulting, contracted measure-

ments, data evaluation, specialist deployment, 

customer-specific software development and sys-

tem integration. imc consistently pursues its claim 

of providing services for “productive testing”. 

If you would like to find out more specific infor-

mation about imc products or services in your 

particular location, or if you are interested in be-

coming an imc distributor yourself, please go to 

our website where you will find both a world-wide 

distributor list and more details about becoming an 

imc distributor yourself: 

http://www.imc-tm.com/our-partners/
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