IMC

An Axiometrix Solutions Brand

imc Application Module

W\ ETVE] Edition 11 - 2022-07-08

© 2022 imc Test & Measurement GmbH
imc Test & Measurement GmbH e Voltastr. 5 ¢ 13355 Berlin ® Germany

Disclaimer of liability

The contents of this documentation have been carefully checked for consistency with the hardware and

software systems described. Nevertheless, it is impossible to completely rule out inconsistencies, so that we

decline to offer any guarantee of total conformity.

We reserve the right to make technical modifications of the systems.

Copyright

© 2022 imc Test & Measurement GmbH, Germany

This documentation is the intellectual property of imc Test & Measurement GmbH. imc Test &
Measurement GmbH reserves all rights to this documentation. The applicable provisions are stipulated in
the "imc Software License Agreement".

The software described in this document may only be used in accordance with the provisions of the "imc

Software License Agreement".

Open Source Software Licenses

Some components of imc products use software which is licensed under the GNU General Public License
(GPL). Details are available in the About dialog.

If you wish to receive a copy of the GPL sources used, please contact our Hotline.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 2

Table of Contents

Table of Contents

ALY 1 T] o o Te [V Lot 4o o ST 4
1.1 B YOU SEAIT cuuvviviiiiieiie ittt ettt e e eerbbre e e e e e e e e seaabbareeeseessesssbsaaneseeesssasastbareresesssnnnns 4
1.2 imc Customer SUPPOIt / HOLIINE ..ocviieieeiieiie ettt st b e st ae e be e s aaeeree 4
I B Y- | I Vo [LSRRI 5
2 imc Application Module ... erene e s s e n s e senssesennsanne 6
B FUNCHIONING ..vviiiiiiiiiiiiiiiiiiriiiniireiereesreessraestrasstrasstsssstesssrssssrasssssssssnssssnsssasssranssses 7
G WOTKFIOW ...ttt e csreneereneesseasssenssssenssssensssssnnssssensssssanssssansssssnns 8
Y = 1] 4 ¥ o 9
N A o T =T o LU TR LT PP 9
5.2 Installation Guide: Development ENVIFONMENTccooviiiiiiieiieeeeiecieeeeee e e e e senareeeee e 9
5.3 Setting up the development environment and adding the Demo APPSccoeccvvrieeeeeeeeccccnvnnnen. 10
6 imc Application Module Assistantccccieiiieeiiieiiieiireiiitnieiencereeierescernssesnssssnsenes 12
6.1 Assistant in IMC STUDIO ...t e e e e e et e et ere e s e eeeeeeabbaaeeeeaeeaenessaan 12
I\ [oTo IV [N @leT o} A={V] =) 4 [o] s ST RUROPTR 13
7 Quick Guide: Developing an imc Application Moduleccccoveuiirieiiirincciiienccenennnens 15
2 N [oY o =4 U] =1 4 o] T U UUTRRRRPPP 18
7.2 SAMPING TYPES weeeiiiiiieeeiiiiee ettt srtt e e e sttt e e e st e e e s s ae e e e e s btaeeesaabaeeeeaasbaaeesasseteessnssaeeessnssaaeessnseees 23
2 T\ o e [0 [2 T =T L= =T SR 23
7.4 Setup of an imc Application Module/Applicationcceccveeeieiiieiieceeee e 28
7.5 Flowchart of an APPlICAtioN ..oooiceiiieiiiiic ettt e s e e bbb ee e e e e e e s s antraaeees 31
B T T T Y R 35
B AT) =Y L 1Y Y SN 37
X €oT o] 1 o] I =1 o SRR 40
8 T 0 o o] | = USSR 41
A LY oY (V] [l o T [L= o =T USSR 43
238D T=1 < TUT =0 4T 1T o o1 45
I V) o] 4 T | R RPUPRRN 46
S R LS - 1 - Lo o USSR 46
9.2 0pening Projects iN ECHPSE ..ocuuiiiiiiiieeenieee ettt st s e e e s s e e e ssiaae e e s sabaaeeesnsens 46
9.3 Adapting the TemPlate Pathcuvveiiiiiiii e e e e s areeees 47
9.4 Renaming the Template fOr QU ProjJECTciiviiiiiiiiiiiee ettt e 48
9.5 REAIIZING OUI PrOJECT ..uuvtiiiiiiiiiiiiiitieiee ettt e e e ettt e e e e e e e e s bbb aeeeeseessesssbasaneeesesssennnsreneees 51
9.6 EXPANAING the PrOJECTE ...ueeiiiiieiiiee ettt et s e e e s st e e s s sbae e e s sabaeeessnsees 57
10 Technical Specs - iMC APPIVIODc.civeiieniieeiiencernniienncrenserescrnsssrassssnssssnssssnsssnnnes 58
11 Pin configurationcceeiiiieiiiieiiiiicrrcrreescreeee s reneessnn e senssesennssesennssssnnssssennns 60
3 Vo =) 61
© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 3

Before you start Chapter 1

1 General introduction
1.1 Before you start

Dear user.

1. The software you have obtained, as well as the associated manual are directed toward competent and
instructed users. If you notice any discrepancies, we request that you contact our Hotline [40.

2. Updates during software development can cause portions of the manual to become outdated. If you
notice any discrepancies, we request that you contact our Hotline.

3. Please contact our Hotline if you find descriptions in the manual which you believe could be
misunderstood and thereby lead to personal injury.

4. Read the license agreement. By using the software, you agree to the terms and conditions of the license
agreement.

1.2 imc Customer Support / Hotline

If you have problems or questions, please contact our Customer Support/Hotline:

imc Test & Measurement GmbH

Hotline (Germany): +49 30 467090-26
E-Mail: hotline@imc-tm.de
Internet: https://www.imc-tm.com

International partners

For our international partners see https://www.imc-tm.com/distributors/.

Tip for ensuring quick processing of your questions:

If you contact us you would help us, if you know the serial number of your devices and the version info of the
software. This documentation should also be on hand.

e The device's serial number appears on the nameplate.
e The program version designation is available in the About-Dialog.

Product Improvement and change requests

Please help us to improve our documentation and products:

Have you found any errors in the software, or would you suggest any changes?

Would any change to the mechanical structure improve the operation of the device?

Are there any terms or explanations in the manual or the technical data which are confusing?

What amendments or enhancements would you suggest?
Our Customer Supportm will be happy to receive your feedback.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 4

mailto:hotline@imc-tm.de
https://www.imc-tm.com
https://www.imc-tm.com/distributors/

Legal notices Chapter 1

1.3 Legal notices

Quality Management
g“:s'::gneme"t [E#®E%[E] imc Test & Measurement GmbH holds DIN-EN-ISO-9001 certification
A [6B00nz0tel R ! since May 1995. You can download the CE Certification, current
certificates and information about the imc quality system on our website:

TR https://www.imc-tm.com/quality-assurance/.
ID 0910085152

. ®
TUVRheinland

imc Warranty

Subject to the general terms and conditions of imc Test & Measurement GmbH.

Liability restrictions

All specifications and notes in this document are subject to applicable standards and regulations, and reflect the
state of the art well as accumulated years of knowledge and experience. The contents of this document have
been carefully checked for consistency with the hardware and the software systems described. Nevertheless, it
is impossible to completely rule out inconsistencies, so that we decline to offer any guarantee of total
conformity. We reserve the right to make technical modifications of the systems.

The manufacturer declines any liability for damage arising from:

e failure to comply with the provided documentation,
e inappropriate use of the equipment.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 5

https://www.imc-tm.com/quality-assurance/

Chapter 2

2 imc Application Module

The imc Application Module serves to integrate measurement channels from "third party" devices or systems
into an imc CRONOScompact respectively imc CRONOSflex system via standard hardware interfaces.

Examples of possible channel sources include:

e Specialized complex sensors
e "third party" devices
e Bus systems (e.g. fieldbusses)
The standard interfaces supported include, in particular:

e Ethernet
e serial interfaces (RS-232, RS-485, RS-422)

The systems to be integrated are typically user-customized or dedicated devices by third-party manufacturers.
The integration is achieved by means of a standard hardware module (APPMOD), which comes with a dedicated
processor for which a custom application is programmed. This program is either created by imc on commission
or can also be created and implemented by qualified partners or trained users provided with specialized
development tools.

This user-specific hardware and software expansion is supported by the device software (imc STUDIO). A special
version of the device software is not necessary.

Characteristics:

e encapsulated, custom hardware + software solution, embedded in a standard system

Standard system with complete software support

Flexible support by unaltered standard operating software
Standard hardware component

Stand-alone, autonomous system environment

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 6

Chapter 3

3 Functioning

The imc Application Module amounts to a subsystem within the imc CRONOS system family, on which an
independent processor runs the user-specific application.

The application communicates with the external devices via the interfaces (Ethernet or serial ports) provided by
the hardware module, where the module is able both to receive and transmit data.

Data are exchanged with the measurement device by means of the following mechanisms:

e channels ("FIFO-channels")
e pv-variables ("process vector")
e Display variables
Each of these variables can be defined either as input or output variables.

The channels are managed under the heading of the "Fieldbus channels" and are incorporated into the usual
mechanisms such as Measurement Start/Stop and Trigger, just like all other channels. The channel data can be
either equidistant, or thy can have a non-equidistant time-stamp format.

What is critical is that incorporation of the channels in the mechanisms is accomplished in a way which
generates continuous streaming data. In this case, they are synchronized, and can be equidistant, so that they
can also be subjected to operations in imc Online FAMOS.

Definitions

Application archive: Configuration of an Application module. The configuration file has the file extension
".appmod". Application archives are stored packed as a ZIP-file and can be saved to a
folder independently of the experiment. The archive currently in use is saved with the
experiment.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 7

Chapter 4

4 Workflow

Process of development by imc, selected partners or trained customers

e Setup of development environment: Eclipse
e Programming of the application in C++
e Generation of a finished compilation as a zipped *.appmod file

Utilization by the user

e Use of the zipped *.appmod file with "any" unaltered standard imc STUDIO software

e Subsequent to concrete configuration (experiment) of the device:
Selection of the specific application by specifying the storage location of *.appmod
(even a USB-stick, for example)

o Flexible selection among different applications is also possible

e The application's code from *.appmod is embedded in the experiment, so it may not be present at runtime,
or when the experiment is loaded.

e Application is either permanently programmed or can be parameterized by the user by means of a specific
dialog / menu.

Debugging, Service, Diagnostics

e At runtime, a "Console" is available in the target system via a separate service interface ("SERVICE", RS232,
3.5mm jack), by means of which debugging and logging info can be recorded via the PC in support of
diagnostics and application development purposes.

e For this purpose, the development environment (Eclipse) is NOT needed, but only the standard console
program on the PC!

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 8

Prerequisites Chapter 5

5 Setting Up
5.1 Prerequisites

Hardware prerequisites:

e imc CRONOScompact (CRC)
e imc CRONOSflex (CRFX)
e imc BUSDAQflex (BUSFX)

Software prerequisites:
e imc STUDIO 4.0R1 or higher

0 Note

The use of process vector variables| 7 1are necessary for most applications. For the use of pv-variables
imc Online FAMOS Professional must be provided in the device.

5.2 Installation Guide: Development Environment

The conditions delineated below apply to installation of the individual development environment components.
As a matter of principle, the developer PC should be equipped with a sufficiently up-to-date operating system.
Java does not need to be installed. If needed, a JAVA version (included in the product package) can be installed.

The remarks below assume that the compiler, ant, etc. are all installed in the target paths suggested in the
respective Setup-programs.

1. Run the Batch-file "Install-IDE.bat" (as of firmware Version (imc DEVICES) 2.11R1). The installation will be in
the folder "C:\imc\crossgcc\".

Note: The installation files may not be run from the Desktop folder.
2. Application development file for the installed version of firmware (imc DEVICES)

Install "Products\imc DEVICES\Tools\imcAppMod\imcAppModDevSetup.exe" from the installation medium.
Change the default path to "C:\imc\imcAppMod". The path in which the files are installed will be needed later
when developing the modules.

o Note

It is possible to install multiple versions; in this case these must be located in different paths:
C:\imc\imcAppMod_2_11R1,

C:\imc\imcAppMod_2_12R1, etc. When the modules are compiled, the respective path must be entered in
Build.properties.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 9

Setting up the development environment and adding the Demo Apps Chapter 5

5.3 Setting up the development environment and adding
the Demo Apps

Proceed as follows to set up the development environment with the complementary demonstration
applications:

1. In the Eclipse "Workspace Launcher", set the Workspace and set the view to the Workbench:
e Enter "C:\Test234", for instance, in the Workspace box. Do NOT use "c:\imc\imcAppMod" or "c:
\imc\imcAppMod\DemoApp"!
e Click on OK
e You can activate notifications to Eclipse Community. This will not affect how to run the product.
e Workbench

2. Import Application module-Reference projects to Eclipse:

1. Menu File > Import

2. Select "General" > "Existing Projects into Workspace" and click on "Next".

3. Insert "C:\imc\imcAppMod" at "Select root directory:" and click on "Browse".
4. Click on "Finish"

3. Import Application module-Demo projects to Eclipse:

1. Menu File > Import

2. Select "General" > "Existing Projects into Workspace" and click on "Next"

3. Insert "C:\imc\imcAppMod\DemoApps" at "Select root directory:" a click on "Browse"
4. Click on "Finish"

4. If applicable, modify the projects' "build.properties":

If applicable, move from the lower tab "Build" to the tab "build.properties"

1. Inthe Project Explorer, double-click on "Kelvimat" > "build.properties"; modify "build.properties";
see the example below
2. Inthe Project Explorer, double-click on Project Explorer "DisplayApp" > "build.properties" ; modify

"build.properties"; see the example below
3. (through 7.) Do the same for all projects: Project Explorer "IENASend12App", "FifoReaderDemoApp",
"RS422DemoRApp", "Template", "Template_en"
Example: Modify the entries denoted by bold font:

"build.properties"

FHH A A R R S H
This variable must be modified if installation to

any other folder is performed than

the default folder: c:\imc\imcAppMod

imcAppModdir = C:/imc/imcAppMod

FHHH AR A R R H H

ant dir = C:/imc/crossgcc/ant-1.9.7

ant_prg = S{ant dir}/bin/imc_ant.bat

svn_prg = C:/Programme/Subversion/bin/svn.exe

nmake prg = S${msvs6 _dir}/vC98/Bin/Nmake.exe

gmake prg = C:/imc/crossgcc//cygwin-2.9.0/bin/make.exe
#crosstools

C:/imc/crossgcc/cygwin-2.9.0/
${crossgcc.path}/bin

crossgcc.path
crossgcc.cygwin

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 10

Setting up the development environment and adding the Demo Apps Chapter 5

5. Save all files:

e Menu File > "Save All"

6. Build the Application module-zip-archive:
e Menu Project > "Build All"

7. Use the Windows-Explorer to verify whether the Appmod Zip-Archive has been created. Under each of the
paths below, a respective ZIP-file should have been created:

1. C:\imc\imcAppMod\DemoApps\DisplayApp
C:\imc\imcAppMod\DemoApps\FifoReaderDemoApp
C:\imc\imcAppMod\DemoApps\IENASend12App
C:\imc\imcAppMod\DemoApps\KelviMatApp
C:\imc\imcAppMod\DemoApps\RS422DemoRApp
C:\imc\imcAppMod\DemoApps\Template
C:\imc\imcAppMod\DemoApps\Template_en

No v s wnN

8. It is recommended to disable "Build Automatically" and enable "Save before Build" in the Eclipse settings.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 11

Chapter 6

6 imc Application Module Assistant

The method of developing an Application archive is very different from that of using it.

This chapter only describes the user side of imc Application Module. Information on development is provided in
the following chapter.

6.1 Assistant in imc STUDIO

The Assistant for configuring the Application module is called from the Layout Repository:

>
EDDcumentati Devices Eﬁ\nalag channels @Digital channels n GPa @Variahles
GPS
Design kMode
Description
| Insert Complete Layout r | ki Analog channels (Reduced)
Sawe as Complete Layout Annotation after measurement
Create Mew Page Annotation before measurement
Duplicate Page E Application module
Delete Page E Channel balance (Default)
M p . q E Channel balance (tare, bridge, offset)
owve Page Fornar
E Channel statistic
Project Mowe Page Backward
% v /=E E Channel statistic {per device and module) i
E Company n Page Properties E Channel statistic {per device)
Hint Select Picture E Channel statistic (storage on dewvice)
Project doc Global Page Settings E Channels
Linked projecemeeammer
prenes E Channels (table with all calumns)
Project documentation path E Device statisti
) evice statistics
Project officer) _\-—\
-\-..,____h 5

E-mail address project afficer

Calling the Assistant

6.1.1 Loading a Applikation

To load a model, click on "Load configuration". Then a dialog window for selecting a model appears.

E Docurentation Devices E Analog channels @ Digital channels GRS @ Variables % Application module
GRS

Module type Slok number & | Configuration Module configuration

~ Device name: Device_X (Count=2)

b APPMODIBUS_3) 1 I Load configuration -

APPMOD{IEIIS_3) z Load configuration -

Load a configuration for the Application module

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 12

Assistant in imc STUDIO Chapter 6

6.1.2 Editing the Module Configuration

Depending on how the developer created the Application, any configuration options! 13 provided can be edited
in the following dialog.

Select the tab Parameters to open the configuration tree.

G Documentation Devices Q Analog channels @ Digital channels aPs @ Yariables % Application module
GPS

Module type Slok number & | Configuration Module configuration

*~ Device name: Device_X (Count=2)

¥ APPMOD{IBUS_3) 1 I Edit configuration + | Devd01s1_ModulConfig-AppRoalyn20...
APPMOD{IBUS_3) 2 Load configuration -

Watiablefchannel assignment

Devices, Slot IDs, Parameters Parameter value
Parameter value
b s Device_x =

2

1

v AppRoalyn2000

v Config
SampleTime 1

~ Datal0 UDPSocket_1

Type UDP
TargetHost 192.168.160.71
TargetPort 8889

LocalPort 3888

MIC 1

Immediately 1

» DatalO MIC 1

Configuration window

6.2 Module Configuration
6.2.1 Configuration Possibilities

Important

The developer determines the scope of configuration possibilities. For this reason, a description of each
Application by the developer is necessary, which includes descriptions of all parameters and options.
Direct exchange with components of the imc device is enabled by:

e Devices channels (analog, digital, fieldbus, etc.)
e Process vector variables
e Display variables

0 Note

Note that there can only be either inputs OR outputs. With outputs (-Out), resources are created. With

inputs, the system makes note that it is to read from the resources. The direction is determined by the
developer.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 13

Module Configuration Chapter 6

Configuration possibilities Description

File (in preparation) File 10: exchange with developer defined file. Parameter:

e Name: Name of the file used for exchange with the module. The name is normally
specified by the developer.

Serial Interface (ComPort) Serial 10: Connection settings via the serial interface. Parameters:

e Name: Name of the interface concerned. System name ("/dev/ttyPSC1"), or a number
(1 for COM1; 2 for COM2).

Bit rate: Bits per second
Data bits: Data bit count

Stop bits: Stop bit count

Flowcontrol

e Parity

TCP (outgoing, TCP 10: Connection settings via TCP. Parameter:

bidirectional) e Host (TargetHost): IP of the target configuration

e Port (TargetPort): Port of the target configuration
e Address: IP of the local network configuration
e Netmask: Subnet mask

e Gateway: Gateway if required

UDP (bidrectional) UDP 10: Connection settings via UDP. Parameter:

e Port: source port

Host (TargetHost): IP of the target configuration

Address: IP of local network configuration

Netmask: Subnet mask

6.2.2 Entries

Entries Description

Display variable Parameter:

o Name: Sets the name of the Display variable used.

Process vector Along with the name, three additional parameters are set: Parameter:
e Name: Name of the process vector variable used
e Unit: Process vector variable unit
e Offset

Factor: Calculation factor

Init: Initialize value

Channel Parameter:

e Name: channel name. If the name is left empty, no IMC resource is created; any IMC
resource already created for the channel is deleted along with the name.

e comment: Comment box
e Y-Axis Unit: Y-axis unit ()
e SampleTime: Should retain the default value.

e SampleMode: (time stamped or equidistant). Should retain the default value.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 14

Chapter 7

7 Quick Guide: Developing an imc Application Module

Application module structure:
Console

l:

VY
» TCPIP(Ethernet)
::> COM1 Custci-mer
device
> COM2
A 4

<>

XBUS (imc)

Depending on how the system is equipped, in the user's version some interfaces may not have
terminals

An Application module can use serial interfaces (COM1, COM2) and UDP, TCP (via the existing network
interface).

The following conditions must be met:

e Development environment: Eclipse, Toolchains (Compiler, Linker)
(a corresponding package is available)

e The developer extension matching the firmware version (imc DEVICES) must be installed on the application
developer's PC.
(ichppModDevSetup.exem on the associated imc STUDIO installation medium)

e The developer's device must be equipped with the same module model as the one which will later be used
by the customer.

e The Application module in the developer's device must be equipped with a console which allows
application output (display of the trace information) to be viewed.
The setting on the PC's Hyperterminal, Terraterm, Putty etc. is:
speed: 115200, byte size: 8, parity: none, stop bits: 1

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 15

Chapter 7

Proceed as follows to create an Application module:

Comment: The sample projects shown are located in the subfolder DemoApps in the developer extension

installation folder.

(default: \C:\Program Files\imc\imcAppMod)

Eclipse Platform
Fun Field Assisk

Praoject

|aug Build Al
Build Configurations

Build ‘Warking Set
lean...
Build Automatically

Make Target

Properties

Ctrl+E

Window F
folder.
.F should be deactivated).
p (1
'T
3
|
F i
2l

L2 xS

Activate the C++ view:

Copy the template project (this is always installed together with the
developer extension for the Application module) to a new project

Create a new workspace using Eclipse (the option Build Automatically

H MH Help

e Window
Mew Editor

Open Perspective

Wig

Shiowy

Customize Perspective, .,
Save Perspective As,,,

as i
as Reset Perspective. ..
- Close Perspective
Close all Perspectives

E0l Mawigation
(]
ro Mew Wiindow

S Preferences

Bl C/C++ Projects
=] console

“= Include Browser
(@) Make Targets

Alt+5hift+3, C

25 Mavigatar
B outline Al+Shift+0, O
[2 Problems Ale+Shift+0, ®

|._[\:| Projeck Explorer
E Properties

" Search AlE+3hift4+0, 5

£ O ey TS = T I LT \Z, Tasks

Other. .. Ale+-shift 40, O

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08
Page 16

Chapter 7

Add the new project using "Import".

[Project Expl | B cjc+

Mty

£ Export...

1. Itis advised to rename the project after importation. Initially, it is inserted under the name "Template".
This is done using Eclipse and the rename function.

2. Inthe file "build.properties", the variable "imcAppModdir" must be changed to the developer extension's
installation path if it differs from the default setting "C:/Program Files/imc/imcAppMod". (Example see
"Setting up the development environmentm“)

3. Match the file name in the subfolder "src" to the name of the target application (here, a short name
should be chosen, such as LightControlApp).

The following files must be renamed:

e model/Template.pcdcl -> model/LightControlApp.pcdcl
e model/Template.mpdcl -> model/ LightControlApp.mpdcl
e src/template.cpp -> src/lightcontrolapp.cpp
e src/template.h -> src/lightcontrolapp.h

4. Change the file build.xml. Here, the Property(Variable) "ModulName" must be set accordingly:
<property name="ModuleName" value="LightControlApp" />

5. Rename the class names in the Include-file and C++ source file:
src/lightcontrolapp.h, src/lightcontrolapp.h
Template -> LightControlApp

6. Create the pin configuration.
The pin configuration is performed in the renamed "Template.pcdcl" file. Here, the process vector
variables, channels and display variables which will be used in the module are declared. Additionally, data
input and data output channels (COMPort, UDP, etc.) can be defined here, which will later be configured
by the user.

7. Setting the module parameters
The module parameters are set in the "Template.mpdcl" file. Here, it is possible to define parameters
which can be changed during the measurement's runtime (Tunable Parameter) and for which process
vector variables are not suitable. These parameters can then be transferred to the running module by
means of the Assistant. Declarations to make include Name, Type and the Initial value. It is possible to
make comments in the file (see the sample files on this subject).

8. Implementation of the module
(Editing, compiling, ...).

9. Create an experiment in imc STUDIO, load it and configure the module.

10.Check function ...
Start measurements; in case of malfunctioning it may be necessary to restart the device, or at least to use
the Assistant to repeat uploading of the program created. If the measurement does not start, find the
error in the console.
Remarks: At present it is only possible to perform error analysis by means of the data imported from the
device that will be connected (or a simulation of it), or by text output that is integrated by the application
developer.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 17

Chapter 7

11.Debug (as in 8), adapt the experiment if necessary and then repeat uploading of the module...

12.1f development of the module is completed, then Eclipse is used to create the "Release" version of the
Application module.

13.Restart the device.

14.Next, the Application module is configured using the Application module assistant.

15.A test measurement is performed. If it functions as anticipated, the development process of the version of
the Application module (application) is completed.
Comment: Malfunctioning may occur in a variety of ways. For this reason, the application developer must
also develop a testing strategy which ensures correct functioning (simulation of the customer devices, test
signals, etc).

7.1 Pin Configuration

Principle outline:

INPUT/ OUTPUT!
SOURCE SINK

@ PIN P PIN >
® PIN I Application Module PIN P
@ PIN g PIN >

Data

IN
ouT

Structure of the pin configuration

A "pin" generally comes with a direction:

1. SINK (Output). The data flow in the direction of the "Device"/"PC" from the Application module.

2. SOURCE (Input). The data flow from the device to the module.
Pins should be defined for all resources which the user must configure in the experiment. For example, if it is
necessary to select and configure a serial interface, then it must be declared as data input/output. Only then is it
possible for the user to make communication parameter settings.

Any imc resources which are used, such as channels, display- and process-vector variables, must be declared via
"PINs" in order to be used. The user can decide later what their names are in the experiment, or with which imc
resources they are linked (so-called "wiring" of the PINs).

A "Pin" which points to imc resources (PVV, display and channels) can only have one direction (either "SOURCE"
or "SINK"), bi-directionality is not possible here).

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 18

Pin Configuration

Chapter 7

0 Note

Process vector variables that are not assigned to a reader in a measurement configuration are not created
in the device. If you create pins for process vector variables that are not read by any instance at a later
time, the pin is still available. This enables the application to function independently of the evaluation of

other modules.

7.1.1 Declaration of the Pin Configuration

#

’
’
’

Pin Name="PVVin" IOType="Source" PinType="PVVar"

IMC AppMod input/output declarations

comment

Keywords are not upper-/lower case sensitive
Values are upper-/lower case sensitive

Name="PVVin"
ValueType=INT32
Offset=0
Factor=1

Unit=" V"

End

Pin

Name="PVVout"
ValueType=INT32
Offset=0
Factor=1

Unit=" v"
Init="1234"

End

Pin

Name="PVVout"
ValueType=FLOAT
Offset=0
Factor=1

Unit=" v"
Init="12.34"

End

Pin

Name="imcNameOfChannel"
ValueType="INT1l6"
idsampletime=20
inputmode="TIMESTAMPED"
inputstate=1
isuint=false

unit="Cc"

yscalefactor=1
yscaletype=1

yoffset=0
yminvalue=-100
ymaxvalue=100
yreflvalue=-1
yref2value=40

End

Name="PVVout" IOType="Sink" PinType="PVVar"

Name="PVVout" IOType="Sink" PinType="PVVar"

Name="ToBeSampled" IOType="Source" PinType=Channel

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08
Page 19

Pin Configuration

Chapter 7

Pin Name="Kanal s" IOType="Sink" PinType=Channel

Name="Kanal s"
ValueType="INT1l6"
sampletime=10000.0
inputmode="SAMPLED"
atoriginal=true
inputstate=1
isuint=false
unit="c"
yscalefactor=1
yscaletype=1
yoffset=0
yminvalue=-100
ymaxvalue=100
yreflvalue=-1
yref2value=40

DecoderBlock="dG90YWwgMzIKNCBkcnd4cil4cil4IDIgd3d3LWRhdGEgd3d3LWRhdGEgNDASNIBPY3QgIDcgMTE6AGI0YWwgMz I
KNCBkcnd4cil4cil4IDIgd3d3LWRhdGEgd3d3LWRhdGEgNDASNiBPY3QgIDcgMTEG"

End

Pin configuration

Beschreibung

PinName (Pin Name="...")

A pin always has a name by which it is known to the Application module (here: 'Name =
"Device"'). Using this name, the application developer can access the resource (pin) in the
application (see sample projects).

PinTyp (PinType="....")

The application developer specifies a PinType (PinType examples provided in the sample
projects). This determines what resource is concerned. PVVar (Process vector variable),
DisplayVariable, Channel or DatalO (files, serial interfaces, etc.) are not possible here. This
specification cannot be altered by the user by means of the Assistant.

(I0Type="SINK")

For process vector variables, display variables and channels, a direction is determined
(I0Type: "SOURCE" or "SINK"). With DatalO only, this specification is purely of an informal
nature. With this the application developer can indicate to the user the main data flow
direction at this terminal (pin). The user is not able to change this information.

Resource name
(Name="Resource")

The resource name is a suggestion or indication as to the data type involved.

Pin Parameter

Each pin type comes with a specialized parameter which the user can adapt to the
experiment. With the channels, however, the application developer decides how the data
are used. This must be implemented with the application. Only the application developer
knows which values are useful to the user and thus which ones the user should enter.

Pin parameters for process
vector variables

These parameters are only used if a process vector variable is declared a "SINK". Otherwise,
these values are determined by the instance of imc STUDIO which creates the process
vector variables.

Value type

Value type declares data type of the process vector variables.
The available choices are: "INT16", "INT32", "TIFLOAT", "FLOAT", "ASCII" and "BIT16"(only
channel pins).

Note 1: If communication with Online FAMOS is to be conducted by means of process
vector variables, then this is only possible with process vector variables of the types
TIFLOAT and INT32.

Similarly, the Assistant will only list those process vector variables with the SOURCE PVV
which match a Value type.

Note 2: It only makes sense to use value type "ASCII" with time stamped channels. Any
arbitrary sequences of data may be written. The user is not limited to zero-terminated C-
Strings; i.e. the length of the block is stated.

Note 3: Value type "BIT16" is used for so-called port channels (channels which transfer 16
individual bits in the word instead of one 16-bit value).

Offset and Factor

Offset and Factor determine the resolution of the integer data types. For Float variables,
these settings are not applicable.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 20

Pin Configuration

Chapter 7

Pin configuration

Beschreibung

Unit

Unit is an information element and determines the unit which is to be displayed as a string
along with the process vector variables.

Pin parameters for
channels

comment: a comment on the resource. This field can be used to transfer information
on the channel to the module.

valuetype: declares the channels' data type. The available choices are: "INT16",
"INT32", "FLOAT", "TIFLOAT", "UINT16", "UINT32" and "DOUBLE64".

Remark: valuetype "UINT16" and "UINT32" should, however, actually not be used; if
possible use isuint, in order to define an unsigned integer.

callbackonsampling: This determines whether the application is called by means of a
method when sample values are generated.

monitoring: The channel is declared as monitor channel. Only "SINK" channels can be
declared as monitor channels and can be set to true or false.

inputstate: This determines whether a channel is active or passive. If a channel is set as
passive, then it is no longer available as a resource in imc STUDIO. In general, it is not
necessary for it to be set to 0 (passive).

isuint: This is used to set whether a channel is to work with unsigned integer values.
The

inputmode: This specifies whether the input consists of time-stamped sample values or
of one continuous data flow. For time-stamped values, use "TIMESTAMPED" and for
continuously sample values "SAMPLED".

atoriginal: This sets the operating type for continuous sampled values. If this
parameter is set to true, then the program itself writes to the sampled values to the
channel FIFO storage; otherwise, the framework retrieves a sample from a cache and
ensures on its own that sufficient data are written to the channel.

synchronized: Synchronized is used with the inputmode="SAMPLED" in order to
ensure an equidistant data stream if the incoming data stream is not synchronized with
the device.

sampletime and idsampletime: idsampletime defines the sampling rate by means of a
value which looks up the actual sampling rate in a table. Instead of idsampletime,
however, it is possible to use sampletime to specify the sampling rate in microseconds
(as a floating point number), but the specified value is converted to the corresponding
ID value.

DecoderBlock: For decoding a channel a decoder block is given. This is then attached
to a channel resource.
Note: The block must be set in

and in one line. Multiple lines are not possible!

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08
Page 21

Pin Configuration

Chapter 7

Possible sampling rates and their ID values

Sampling rate as floating point number

ID Sampling rate

1 "10 ps" 10.0

2 "20 ps" 20.0

3 "50 ps" 50.0

4 "100 ps" 100.0

5 "200 ps" 200.0

6 "500 ps" 500.0

7 "1 ms" 1000.0

8 "2 ms" 2000.0

9 "5 ms" 5000.0

10 "10 ms" 10000.0

11 "20 ms" 20000.0

12 "50 ms" 50000.0

13 "100 ms" 100000.0
14 "200 ms" 200000.0
15 "500 ms" 500000.0
16 "1s" 1000000.0
17 "2s" 2000000.0
18 "5s" 5000000.0
19 "10s" 10000000.0
20 "20s" 20000000.0
21 "30s" 30000000.0
22 "1 min" 60000000.0
23 "2 min" 120000000.0
24 "5 min" 300000000.0
25 "10 min" 600000000.0
26 "20 min" 200000000.0
27 "30 min" 800000000.0
28 "1 h" 3600000000.0

0 Note

At the present time any sample time settings < 200 us are rejected by the pin declaration compiler and are

replaced with a sampling time of 200 ps.

e Unit: Unit determines the unit displayed as a string along with the channel data.

o yoffset: Offset

e Display scaling - Yscaletype, yscalefactor, yoffset, yminvalue, ymaxvalue, yreflvalue and yref2value
configure the default scaling of the channel's curve window.

yscaletype determines how the scaling is calculated:
1. uses yscalefactor without offset.
. uses yscalefactor and yoffset.

2
3. uses the two reference values yreflvalue and yref2value.
4

. uses the value limits yminvalue and ymaxvalue.

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08

Page 22

Sampling Types Chapter 7

7.2 Sampling Types

Using the parameter inputmode, it is possible to set the sampling types SAMPLED and TIMESTAMPED (see
inputmode). By means of the two parameters atoriginal and synchronized, there are three possibilities for setting
the sampling type SAMPLED.

Thus, there are the following ways to use channels (input, meaning the data flow proceeds from outside into the
device) with their FIFO buffers.

1. The values arriving from the outside are written along with a time stamp to the channel info.

The is activated for a channelPIN by:
Inputmode = TIMESTAMPED .

2. Data arriving from the outside, but which are not synchronized to the device. In order to form an
equidistant and synchronized data stream, these are not written directly to the FIFO, but instead the
incoming sample is saved and extracted and the time which conforms to synchronization.

The is activated for a channelPIN by:
Inputmode = SAMPLED .

3. Data arriving from the outside batch-wise but which is equidistantly sampled and synchronized with the
imc device. These data are then written directly to the FIFO buffer; no further synchronization or similar
process is performed.

The is activated for a channelPIN by:
Inputmode = SAMPLED and atoriginal=true .

4. Data arriving from the outside from which an occasional value can be lost are supplied with substitute
vales which are then written to the FIFO buffer.
The is activated for a channelPIN by:

Inputmode = SAMPLED und synchronizedl=true .

7.3 Module Parameters

7.3.1 Function of the Module Parameters

The module parameters are an extra part of configuring an application.
The module parameters are divided into three groups:

e Parameters which can be changed during the measurement (so-called "tunable" parameters).

e Parameters which are only significant at the measurement start.

e Parameters which describe the interfaces used.
For the "tunable" parameters there is a function which informs the application of any changes to one or more
parameters. The values supplied to a parameter are used as the initial value when the measurement starts.
Parameter groups can be joined up into blocks.

Parameters which configure interfaces are not "tunable".

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 23

Module Parameters

Chapter 7

7.3.2 Declaration of the Module Parameters

// decl module parameter
[Blockname]
// Block of Variables, which may be changed during measurement.

// scalar type
IMC_IEEE_FLOAT fValue = 101.55
IMCiDOUBLE dvall = 155.0

IMC INT8 i8Val = -10

IMC UINT8 ui8val = 10

IMC INT16 ilé6Val = -255

IMC UINT16 uiléval = 255

IMC INT32 i32Test = -100
IMC_UINT32 ui32Test = 100

IMC STRING test2[255] = "hello"

IMC BOOL bTest = IMC TRUE
// test complex value
IMC COMPLEX complexVal=(1l 2)

// vector

IMC UINT32 vectl = [[1 2 3 4]]

IMC UINT32 vect2 = [[1] [2] [3]]

// vector of complex values

IMC COMPLEX complexVectl = [[(1 1) (2 2) (3 3)]]
// New: string - vector

// each string-value in the vector may have a maximum of 10 characters

// String values longer than 10 characters are truncated
IMC STRING sVectTestl[10] = [["valuel" "value2"]]

// Each string-value has a maximum length of MAXPATH

// (generally 255 characters)

IMC STRING sVectTest2 = [["valuel" "value2"]]

// matrix
IMC UINT32 matrixl = [[1 2 3] [4 5 6]]
IMC COMPLEX complexMatrix = [[(1 1) (2 2) (3 3)] [(4 4) (5 5) (6 6)]]

// New: string-matrices

// Each string-value has a maximum length of MAXPATH

// (generally 255 characters)

IMC STRING sMatTestl = [["valuel" "value2"] ["value3" "value3"]]

// Each string-value in the matrix may have a maximum 10 characters
// String values which are longer are truncated to 10 characters

IMC STRING sMatTest2[10] = [["valuel"] ["value2"]]
[Config]

// Block of parameters which are not "tunable"

IMC INT8 i8Val = -10

IMC UINT8 ui8val = 10

[DataIO Namel]
Type=COM
Number=1
Bitrate=19200
Databits=8
Stopbits=1
Parity=none
Flowcontrol=none

[DataIO Name?2]
Type=FILE
Name=filesname
Immediately=true

[DataIO Name3]

Type=TCP
TargetHost="192.168.160.51"
TargetPort=8080

[DataIO Named]

Type=UDP
TargetHost="192.168.160.51"
TargetPort=8081
LocalPort=8082

NIC=1

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 24

Module Parameters Chapter 7

[DataIO Name5]
Type=TCPServer
LocalPort=12345

[DataIO NIC 1]

IPAddress = "192.168.160.14"
Netmask = "255.255.255.128"
Gateway = ""

7.3.3 Declaration of the General Module Parameters

Parameters must always be created under a block. There are a few reserved block names:

e [Config] for the block of not "tunable" parameters.
e All block names which begin with DatalO (e.g. [DatalO Name1234])
All parameters must be commenced with a data type designation.

A parameter declaration appears as follows:

IMC_UINT32 ui32Test = 100
The data type (here: IMC_UINT32), the parameter name (here: ui32test) and the start value (here: 100).

The following data types are available (for scalars, matrices and vectors):

IMC_INT8 and IMC_UINTS
IMC_INT16 and IMC_UINT16
IMC_INT32 and IMC_UINT32
IMC_IEEE_FLOAT

5. IMC_BOOL

Note: Within the DatalO-blocks, the types are not specified, since they are determined by the respective
parameter.

HwnN PR

Access to the parameters is accomplished as the following example illustrates.

u/ Example Access to the parameters

IMC STRING sGroup ("IENA");
IMC_STRING sParam("Key");

Node * pNode = GetModulParam (sGroup, sParam);

if (NULL == pNode) {
TRACE (
"IENASendl2App: :OnNewConfiguration(): GetModulParam() failed to fetch <Key>\n"
)7
break;

}
objParameter& objParamKey = *pNode;
IMC UINT16 m IENA Key = 0;
try {
m_ TIENA Key = objParamKey;
} catch (int err) {
// bad cast ..
}

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 25

Module Parameters Chapter 7

Vector and matrix parameters are a special case:

G/ Example Example of a matrix consisting of string values

IMC STRING sGroup ("IENA");

IMC STRING sParam("szMatrixTest ");

Node* pNode = GetModulParam (sGroup, sParam);

objParameter& ObjParam szMatrixTest = pNode;

unsigned int rows = ObjParam szMatrixTest.getDimArrayFirst();

unsigned int cols = ObjParam szMatrixTest.getDimArraySec();

for (; idxRow < rows; idxRow++) {
unsigned int idxCol = 0;
for (; idxCol < cols; idxCol++) {

const char *szValue = (const char *)ObjParam szMatrixTest[idxRow] [idxCol];

}
}

For the DatalO-blocks, a table (map) is set up, which summarizes the groups accordingly. The 10-interfaces to
which they are connected are also available at the reference determined there; for more on this topic, see the

sample projects (DemoApps).

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 26

Module Parameters Chapter 7

7.3.4 Declaration of the DatalO Module Parameters

For the DatalO parameter, the following parameter groups exist:

Parameter Description

1. Type UDP a. TargetHost defines the device with which to communicate. Here, IP-numbers are to
be used. The system does not decode names. The parameter is a string.

b. TargetPort: Target port number (1-65535) to which the UDP-packages are to be sent.

c. LocalPort: Port number (1-65535) from which the UDP-packages are to be sent and
responses are received.
Note: TargetPort and LocalPort can have the same number.

d. NIC: Number of the network interface used. At the present time, there is only one
(i.e.: the only permitted number is "1").

2. Type TCP a. TargetHost defines the device with which to communicate. Here, IP-numbers are to
be used. The system does not decode names. The parameter is a string.

b. TargetPort: Target port number (1-65535) of the TCP port to which to connect.

3. Type COM a. Number: States the number of the serial interface (1 for COM1, 2 for COM2). At the

present time, only two serial interfaces are available.

b. Bit rate: Bit rate to be used for the data transfer speed (9600, 19200, 115200). The
standard values are available, see technical data (560,

c. Databits: Databits specifies the number of data bits in a data byte of data transfer
(the available choices are 5,6,7 and 8. Typically, 8 is used.)

d. Stopbits: Number of stop bits to be used (1 or 2 are available). The stop bit length of
1.5 is not supported at the present time.

e. Parity: Specifies the Parity bit type. This setting is not possible in conjunction with 8
data bits. Here, "even", "odd" and "none" can be used.

f. Flowcontrol: The flow control setting; the choices are either software flow control
(the use of Xon/Xoff symbols) or hardware flow control (RTS and CTS lines), or none

("crtscts", "xonxoff" and "none").

4. Type File a. Name: Name of the file to be used. Files included in the download of an application
are placed in "/tmp" (e.g.: /tmp/MyTestFile.txt).

5. Type NIC a. IPAddress: Configuration of the local IP-address of the network interface.
b. Netmask: Configuration of the network interface's net mask.

c. Gateway: If communication is to proceed via gateways, then the first route must be
entered here.

0 Note

As part of the declaration of the UDP and TCP settings, a NIC type with default values is created
automatically. If these values are used, it is possible to skip listing them separately in the declaration (IP
address: "192.168.160.14", "255.255.255.0", no Gateway("")).

The type NIC always has the name "DatalO NIC 1", where the digits represent the NIC's number. At the
present time, only one network interface is available.

For the DatalO types 1-3, there are the additional parameters "Immediate" and "Comment" available. If
"Immediate" is set to "true", then the respective DatalO channel is activated upon importing the configuration.
If "Immediate" is omitted or explicitly set to "false", then the program is forced to open the channel. "Comment"
is simply a comment on the respective DatalO channel. The type NIC always causes configuration of the network
interface addressed.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 27

Setup of an imc Application Module/Application Chapter 7

7.4 Setup of an imc Application Module/Application

Module operation always follows the sequence given below:

1. Integration and initialization of the module.

2. Performing the configuration, preparation for measurement with the connected measurement devices,

etc.

Completing configuration after performing channel configuration.
Wait for measurement to begin.

Receiving and recording measurement data.

Sampling from canal pv-variables and sending to connected device.

© N U kW

automatically ended.
9. Deinitialization and end.
Ensure that the part of the module created by the application developer is entirely controlled by the

Application module framework. In this regard the methods in the module instance (callback function) are

If necessary, "STOP" message processing if a user has pressed the "STOP" button during measurement.
If necessary, processing of the "START" message if a user triggers a new start after measurement has

accessed according to the operating status. At present it is not possible to start background processes in parallel

(Threads/Tasks).

7.4.1 Register Class

In order to carry out registration, a registration class must be created for each Application module in the

application framework. A global instance is then needed from this registration. This is necessary so that an
Application module in the application framework can be registered for runtime. Only after this has been done

can the application framework access the Application module and call the module methods.

In general, it is formulated as follows: ("Template" is replaced by the module class name):

class Template register
{
public:

Template register () {

IdxAppMod: :RegisterAppMod (Template: :ModCreate) ;

#ifdef _DEBUG
std::cerr << std::endl << "Template register(): Registered Template" << std::endl << std::endl;
#endif

}

~Template register() {};

private:
Template register (Template register &); // NoImpl
Template register & operator= (Template register &);//NoImpl

bi

The Application module class is registered with a global instance as follows:

Template_register JustToReg;

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 28

Setup of an imc Application Module/Application Chapter 7

7.4.2 The Class CAppMod

CAppMod is available as the interface class. The application developer adds the application class. The
application developer then equips this with its functionality. The CAppMod class serves the framework as an
interface to the Application module. In this the class of the Application module must overload several of the
CAppMod methods. For those methods that do not need to be overloaded, the CAppMod possesses simple
method stubs which ensure smooth running with the rest of the device during operation.

The module class of the Application module is registered in the application framework by means of the
registration class mentioned above.

CAppMod AppClass
* reference
methods 5 methods
call classes call
IDMAN

application framework

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 29

Setup of an imc Application Module/Application

Chapter 7

7.4.3 Status Return of Methods

With some exceptions, all methods of a Application module deliver a result value. This might be notification of a
configuration error, status notifications, etc. The following return values are currently possible:

Return values

typedef enum eAppModError
{
// general
APP_CONTINUE POLL =
APP_NO ERROR =
APP_SUCCESS
APP FAILURE
APP NOT IMPLEMENTED = -
// Config
APP_BAD CFG_VERSION
incompatible !
APP BAD CFG = -
// Hardware
APP HW FAILED = -
APP HW INIT FATLED
APP_HW NOT INITIALIZED = -

NP OO
~ N N S~ O~

10,
11,
20,

21,
22,

// Application specific results

APP_MOD_ERROR BASE = -
APP_MOD_ERROR FIRST = -

APP_MOD ERROR_LAST = -
/] =

APP_ERROR LAST = -
} eAppModError;

0 Note

32,
33,

47,

47

///<
///<
///<
///<
///<
///<
///<
///<
///<

///<
///<

///<
///<

Still need to wait

No error

Operation successful.
generic failure..

Version of configuration has been detected to be

Configuration is bad !

General problem with Harware
Init of Hardware failed
Hardware has not been initialized

Base of application specific results.
first of application spec. results.

last of application specific results.

LAST

The error code specific to the application is depicted in the general imc error list. APP_MOD_ERROR _BASE is
assigned to -5432 (depicted 5432) and APP_MOD_ERROR_LAST to —5447. By means of the method
SignalOnlineError (see below) the user can also be notified of an error even during measurement.

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08
Page 30

Flowchart of an Application

Chapter 7

7.5 Flowchart of an Application

. FyY Update
apgl;:ztlnn Shutdown
etc
INIT Onlnit ExIT OnExit
>l Wait on configuration
transfer OnClearCaonfiguratiopn OnStopheasurement
configuration CnlMew Configuratiopn OnRestartMeasurement

¢ OnCompletelyConfiguredinit

OnCompletely ConfiguredPoll

OnDelayMeasurementlnit

CnDelayMeasurementFaoll

OnStarthde asurementPall

OnTimerStarted

OnMewDataPall
OnSamplingTimer

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08

Page 31

Flowchart of an Application Chapter 7

7.5.1 CAppMod Class Methods

IMC STRING GetApplicationName () ;
GetApplicationName is called in order to obtain the name of the Application module. This method is
implemented by the application developer.

APP PIN MAP * GetPinMap () ;
GetMap is a method that is defined and implemented by the CappMod. GetMap is a utility function for the
application developer and delivers a pointer to the loaded Pin configuration. The usual methods for a STL
MAP are available. The name of a "PIN name" used in the PIN declaration serves as the key.

APP DATAIO MAP * GetDataIOMap () ;
GetDatalOMap is a method which is defined and implemented by means of CappMod. GetDatalOMap is a
service function for the developer, which returns a pointer to the DatalO parameter imported. The typical STL
MAP methods are available. The name of the "DatalO"-parameter which had been used in the module
parameter declaration serves as the key (e.g.: "DatalO NAME4").

Node * GetModulParam (IMC STRING & sGroupName, IMC STRING & sParamName) ;
GetModulParam allows accessing the module parameter database.
GetModulParam is a utility function for the application developer.

IMC BOOL GetRealtimeModeNeeded (void);
GetRealtimeModeNeeded is called by the framework in order to determine whether the operating system
must be set up in the corresponding module.

eAppModError OnInit (void) = 0;

eAppModError OnExit (void) = 0;
Onlnit is called when the Application module has been completely instantiated. This takes place one time
during the module start. In the examples a reference to the PIN MAP is requested.
OnExit is called when the Application module is ended. It is called a maximum of three times.
These methods serve to carry out the functions at the start and end of the runtime. This allows e.g. a
notification to be sent to a connected device.
Both methods are to be implemented by the application developer.

eAppModError OnNewConfiguration (void) ;
OnNewConfiguration is called by the framework when a new module configuration has been received and
processed. The Application module can now for its part read the configuration and save and process this
according to need. The forms chosen here have not been determined. The framework takes care of the
deallocation in the resources contained in the PIN MAP.

eAppModError OnClearConfiguration (void) ;
OnClearConfiguration is called by the framework in order to show that the current configuration is no longer
valid. such references to resources in the PIN MAP must be discarded. This method can and is called any
number of times. The application alone must ensure that the resources are not returned twice (e.g. thus:
free(pszMeldung);pszMeldung = NULL;.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 32

Flowchart of an Application Chapter 7

void OnCompletelyConfiguredInit () ;
OnCompletlyConfiguredinit is called by the framework when all configurations have been loaded and
processed and the whole configuration of the system is now in the system itself and this can be read by the
module. Because after the module configuration the channel configuration is still given to the module,
further action may be necessary.
This method is only to be implemented when preparations must be made for final processing of the entire
configuration.
The configuration objects come in the following order:
1. IDMAN configuration (fills the idmanresourcepool)
2. Module configuration (Pin configuration and module parameters as well as their start values and the
module executable itself.
3. Channel configuration
Following channel configuration the method pairs are called.
eAppModError OnCompletelyConfiguredPoll () ;
OnCompletlyConfiguredPoll is called by the framework for as long as APP_CONTINUE_POLL is returned. This
method must regularly return again so that the framework and, if necessary, the timeout of the system
software can be reset. Processing of the channel configuration is only confirmed to the basic system when
APP_SUCCESS or an error notification occurs.
void OnDelayMeasurementInit () ;
OnDelayMeasurementlnit is called by the framework in order to notify the Application module that work can
still be carried out that is necessary for preparation of the measurement task. The necessary initializations are
also to be carried out.
eAppModError OnDelayMeasurementPoll () ;
OnDelayMeasurementPoll is exceuted so that the Application module carries out the final work necessary to
prepare for measurement. Confirmation of preparedness for measurement is only sent once APP_SUCCESS or
an error notification occurs.
This method pair is only to be implemented if it is needed.
eAppModError OnStartMeasurementPoll () ;
OnDelayMeasurementPoll is called while waiting for the actual start of measurement. Here, for example,
data can be received from a connected measurement device (e.g. if the device immediately begins to send
data while it is establishing a connection).
Comment: possibly initializations must take place with OnDelayMeasurementlnit.
void OnNewDataPoll (const PAI TIMERTICK & TimeTick) = 0;
OnNewDataPoll is called at least one time per sampling interval by the framework during measurement.
Regular operations are carried out here. Nevertheless, this method should never need longer than the
shortest sampling time. This method is to be implemented by the application developer.
void OnSamplingTimer (void *pObject, const PAI TIMERTICK &);
OnSamplingTimer is called by the framework when a time interval has been reached. The time interval is
requested by means of AddSamplingTimer. In this case the object (pObject) is given as indentification.
eAppModError OnStartTriggerDetected (int) ;
eAppModError OnStopTriggerDetected (int, IMC BOOL) ;
OnStopTriggerDetected and OnStartTriggerDetected are called by the framework when a stop or start trigger
is recognized. The Application module can carry out an action, e.g. send a signal to a connected device.
Because a channel can start as well as stop a trigger, it is important to check for each channel whether the
stop trigger is being caused by the beginning or end. As long as a channel is started and stopped by different
triggers, the falling edge is regarded as the stop trigger (the rising edge has already set off the start trigger)
void OnStopMeasurement (const PAI TIMERTICK &) ;
OnStopMeasurerment is called by the framework when the system user has pushed the stop button during
measurement.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 33

Flowchart of an Application Chapter 7

void OnRestartMeasurement (const PAI TIMERTICK &);
OnRestartMeasurement is called by the framework when the system user activates the the start button after
the stop button.
eAppModError OnSampleGenerated (FBI CHANNEL &, const PAI TIMERTICK &);
With OnSampleGenerated the user is informed that a sample value is being generated for one channel. The
channel in question and the time stamp are generated. The channel and time stamp are transmitted.
eAppModError OnSyncCreate (FBI CHANNEL &, const PAI TIMERTICK &) ;
OnSyncCreate informs the application that measurement data has was not written in time for one channel by
the Application module and a substitute value has been written. The channel object in question and the time
stamp are transmitted.
With these two methods, steps can be taken to counter further measurement data failures.
eAppModError OnStampedChannelCheck (FBI CHANNEL &, const PAI TIMERTICK &);
OStampedChannelCheck informs the application that for a time-stamped channel, the measurement data
have not been written by the application in time. The channel object in question and the time stamp are
transmitted.
eAppModError SignalChangeOfModuleParam() ;
eAppModError SignalChangeOfModuleParam (Node &) ;
eAppModError SignalChangeOfModuleParam (IMC VECTOR<Node *> &);
These methods are called by the framework when the the user has changed the parameters of the module.
Notification of individual updates, lists or both of these can be given at the same time.
void AddSamplingTimer (const PAI TIMERTICK& SamplingTimeInTicks, woid*
pObject);
This method is implemented in CappMod and serves to register a "timer" in the framework. During
measurement, the method OnSamplingTimer is then called. pObject serves exclusively the purpose of
identification on the part of the module which assigns this value.

0 Note

This Timer setting applies for the entire duration of the measurement. It is not possible to "un-register".
Instead, it happens automatically with the next measurement initialization.

Once a registered SamplingTimer is no longer needed, it can easily be detected by means of the pObject
pointer, and in the case of OnSamplingTimer it can be exited without additional processing.

void RequestExtendedTimeout () ;
This method allows the Application module to extend timeout. This can be used, for example, during the
configuration operation in OnNewConfiguration when complex operations are necessary with a connected
device. Use of this should be avoided whenever possible.

void SignalOnlineError (eAppModError Error);
With this the application provides notification during measurement that an error has occurred. Itis up to the
application developer whether the application continues to write data. The framework itself will continue to
call the appropriate methods of the application.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 34

Pin MAP Chapter 7

7.6 Pin MAP

Objects of the class CAppPin are filed by name. The CAppPin class is the basic class for the "Pins".

The most important methods of these classes:
Reading and writing values from/to a Pin:

/* reader */

virtual IMC_UINT32 readAscii();
virtual IMC UINT16 readBitl();
virtual IMC UINT16 readBitl6();
virtual IMC_INT16 readIntl6()
virtual IMC_INT32 readInt32();
virtual IMC_IEEE_FLOAT readFloat();
virtual IMC_IEEE FLOAT readTiFloat();
/* writer */

’

virtual IMC BOOL writeAscii char * value);
virtual IMC BOOL writeBitl IMC UINT16 value);
virtual IMC BOOL writeBitlé IMC UINT16 value

virtual IMC BOOL writeInt32 IMC INT32 value
virtual IMC BOOL writeFloat IMC_IEEE_FLOAT value
virtual IMC BOOL writeTiFloat(IMC IEEE FLOAT value

o Note

At present these methods are supported exclusively by PVVar PINs. Of these, display variables know
readFloat and writeFloat.

(
(
(
virtual IMC BOOL writeIntlé (IMC INT16 value
(
(
(

The following functions are used for writing data to channels. The timestamp is only for channels with time-
stamped values of importance. In all, a dummy is used. The value in this case is ignored.

Writing data to channels

/* writer with timestamp */

virtual IMC BOOL writeBit (const CAppModTimerTick &, IMC UINT16);

virtual IMC BOOL writeIntl6é (const CAppModTimerTick &, IMC_INT16);

virtual IMC BOOL writeInt32 (const CAppModTimerTick &, IMC_INT32);

virtual IMC BOOL writeFloat (const CAppModTimerTick &, IMC IEEE FLOAT);

virtual IMC BOOL writeAscii (const CAppModTimerTick &, const char *, IMC UNIT16 lentgh);

Methods for writing multiple samples in one call:

const CAppModTimerTick &, CAppModSampleIntlé6);

virtual IMC_BOOL writeBit)

const CAppModTimerTick &, CAppModSampleIntlé6);
)
)

virtual IMC_BOOL writeIntl6
virtual IMC_BOOL writeInt32
virtual IMC_BOOL writeFloat

0 Note

To identify the "invalid" call, the above methods return false; if a value has been read or written
successfully, true is reported.
1. To write multiple samples, proceed as follows: Create instance of the respective
CAppModSampleXXX and size (new CAppModSampleXXX (N);)
2. Sampled values by means of
putSamples (IMC_XXX * pSamples, int at, int n);
putSample (IMC_XXX Sample, int at);
in the instance.
3. Write them to the channel (FIFO) using the respective writing method at the pin.
(PinEntry. writeXXX (Tick, CAppModSampleXXXInstance);)

’

const CAppModTimerTick &, CAppModSampleInt32
const CAppModTimerTick &, CAppModSampleFloat

’

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 35

Pin MAP

Chapter 7

The following methods are available for reading from

ChannelFIFOs:

// Get FIFO State
virtual eAppModReaderState
// FIFO readaccess

virtual eAppModSampleResult
virtual eAppModSampleResult
virtual eAppModSampleResult
virtual eAppModSampleResult
virtual eAppModSampleResult
virtual eAppModSampleResult
virtual eAppModSampleResult
virtual eAppModSampleResult
virtual eAppModSampleResult

// FIFO Utilities

virtual IMC INT16 getTriggerTime (CAppModTimerTick & TriggerTime)
virtual IMC INT32 getPreTrigger ()
virtual IMC INT16 getTrigger ()
virtual IMC_INT16 getFull ()
virtual IMC INT16 getReady (
virtual IMC_INT16 setReady (
virtual size t reSync ()

GetResource(...);

getFIFOReaderState

readAscii (AppModSampleTSAsciiVectoré&, IMC UINT32 maxNum
readBitl (CAppModSampleIntl6 &,
readBitl (AppModSampleTSIntl6Vectorg,
readIntl6 (CAppModSampleIntl6 &,
readIntlé (AppModSampleTSIntl6Vectors ,IMC_UINT32
readInt32 (CAppModSampleInt32 &,
AppModSampleTSInt32Vectors ,IMC_UINT32
readFloat (CAppModSampleFloat &,
readFloat (AppModSampleTSFloatVectors ,IMC_UINT32

IMC_BOOL exact
IMC UINT32 maxNum
IMC_BOOL exact
IMC_BOOL exact

IMC_BOOL exact

virtual
virtual
virtual
virtual

void GetResource (PAPP CHANNEL &) ;
void GetResource (PAPP PVV &);
void GetResource (PAPP DAC &);
void GetResource (void * & id);

Delivers by reference a pointer to the respective resource.

1. Inthe case of a process vector variable, the pointer on the instance of the PinConfig object (the PinConfig

object allows access to the configuration data of the process vector variable in question).

2. Inthe case of a channel the pointer is detected on the instance of the PinConfig object (the PinConfig

object allows access to the configuration data of of the channel in question).

GetName();

Delivers the name of the Pin.

ConnectType();
Delivers the Pin type.

GetType()

Delivers the direction (SINK or SOURCE).

GetValueType()

Delivers the data type (INT16, UINT16, etc.).
By means of the Pin object from the PinMap the above methods for writing data can be directly written in an
imcResource. For writing to the channel resources, those methods should be used that are also rendered with a
time stamp. This is only important for time stamped channels. For all other channel operation modes the
transferred value is ignored.

It is important that for process variables and for channels only those methods are used that correspond to the
data type. Also important here is that during reading of a PVVariable (which is written by an Online FAMOS
program) the values are read as TIFLOAT. The method in question recalculates the value in an IEEE Float with
which the application can then use for calculation.

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08

Page 36

Pin MAP Chapter 7

When reading from FIFOS (channels), be sure to note that the method getFIFOReaderState must be continually
called at the respective channel object. This is the only way to ensure that the system treats a FIFO correctly.
This applies to all ChannelPins which are registered by means of a reference to an existing resource.

At the present time, for time-stamped channels, only one sample value per call can be read.

The methods for reading from the FiFo return the following result values

APPMODSAMPLE LESS READ
APPMODSAMPLE NOERROR
APPMODSAMPLE INVALID
APPMODSAMPLE _NOT_READ
APPMODSAMPLE FULL
APPMODSAMPLE NOMEM
APPMODSAMPLE OVERFLOW
APPMODSAMPLE LAST

e LESS_READ means that the requested number of sample values can not yet be found in the FIFO. Example:
an attempt is made to read 100 sample values from the FIFO (instance of the class(es) CappModSample...
(100)). LESS_READ provides a notification that fewer than 100 sample values have been written to the
object.

e NOT_READ announces that the method read... has been called with exact=IMC_TRUE. In this case, fewer
than 100 samples were in the FIFO and no sample values were read. NOT_READ is also returned in other
situations when no sample values have been transferred to the object. If the object was filled completely,
NOERROR is returned.

e FULL is returned if the system returns FIFO_FULL upon importing with exact=IMC_TRUE. No further data
are written to the FIFO buffer in that case. The residual data in the FIFO must be retrieved using
exact=IMC_FALSE. This is the only way to ensure that the channel's FIFO buffer is completely emptied and
that the status is set correctly in the device.

1, ///< Not enough data in fifo.
0, ///< Operation OK
-1, ///< invalid Parameter (i.e. pos and amount out of range)
-2, ///< inform caller , no data read
-3, ///< inform caller, fifo full
-4, ///< No memory available for sample
-5, ///< A FIFO Overrun occured

o NOMEM is returned if insufficient memory is available while reading.

e OVERFLOW indicates that the FIFO has overflown; more data were written to the FIFO than can be
retrieved during the buffer duration. The FIFO must then be synchronized to the channel object by means
of reSync. reSync reports the number of sample values lost. In the case of a time-stamped channel, only the
number of FIFO words is reported.

GetFIFOReaderState returns the following messages by means of eAppModReaderState:

e APPMOD_FIFO_ERROR : Announces an error state.

e APPMOD_FIFO_IDLE: The FIFO is in its IDLE state and no further sample values can be read. In this state, it
is even NOT PERMITTED to try to retrieve sample values from the FIFO.

e APPMOD_FIFO_OVERRUN: The FIFQ's state following an overflow. This state is only exited once reSync()
has been called.

e APPMOD_FIFO_DONE: At the end of the data recording (measurement stop, stop trigger), the system is
briefly in the state DONE. This means that all data have been retrieved from the FIFO. The system waits for
the FIFO to return to IDLE mode.

e APPMOD_FIFO_TRIGGERED: The FIFO is in the state in which data can be read.

7.7 DatalO MAP

The DatalO Map (GetDatalOMap()) behaves the same way as the PinMap. Like the PinMap, it is an STLMAP. In
contrast to the PinMap, it contains instances of the class CappModDatalO. Accordingly it is queried with "find".

Querying the DatalOMap for a DatalO entry ("DatalO Name3") returns a reference (Pointer) to an instance of
the class CappModDatalO; (Note: the DatalOMap is an STL Map).

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 37

DatalO MAP Chapter 7

The CappModDatalO provides the user with the following methods:
void GetResource (PCComm &, ParamVect * &);

Returns a pointer to the instance of the associated CComm object, as well as a vector with string pairs.
void GetResource (PCComm &) ;

Returns a pointer to the instance of the associated CComm object.
const IMC STRING GetDataIOName () ;

Returns the name of the DatalO channel.
const IMC_STRING GetDataIOType () ;

Returns a DatalO channel's type ("UDP", "TCP", etc).
const IMC STRING GetDataIOConnect() ;

Returns a string describing the DatalO channel's connection.
const IMC_STRING GetDataIOComment () ;

Returns the DatalO channel's comment.

7.7.1 DatalO Class (CCom)

The Ccomm class creates a uniform control for data input and output. This is a factory class. On the one hand
communication objects register with it. Using an associated name, CComm recognizes the type and creates an
appropriate object. Four types are currently available:

Files, serial interfaces (COMPORT), UDP Socket and TCP Socket.

All methods deliver back a result. Enumeration eCommError describes the possible result values. The following
error codes are depicted:

COMM_OK
COMM NO SPACE
COMM_LESS_SPACE
COMM NO DATA
COMM_LESS DATA
COMM BAD NAME
COMM_BUSY
COMM_INVALID
COMM_NO CHAN
COMM _CLOSED
COMM_BAD TYPE

0

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10

COMM READ FAILED = -11
COMM GENERAL -12
COMM CANNOT OPEN = -13

COMM WRITE FAILED= -14
COMM_SEEK FAILED = -15

COMM SOCKET FAILED = -16
COMM BAD ADDRESS = -17
COMM BIND FAILED = -18
COMM _CONNECT FAILED= -19
COMM READ TO LARGE = -20
COMM READ TIMEOUT = -21

7.7.2 Description of the CCom Class Methods

eCommError open() ;
Open the file/socket/COMPort. The necessary parameters are given when the object is created. These must
be called on PINs if the channel has not been opened using the setting immediate.

eCommError reopen(const IMC STRING &, const ParamVect &);
eCommError reopen(const IMC STRING &, const IMC STRING &, const ParamVecté);

The file/socket, etc. is opened again with the same object instance (the old channel is closed beforehand). A
change in the communication type is in this case possible.

eCommError close (void) ;
Closes a communication channel

eCommError read (IMC UINT32 rsize, void * , IMC UINT32 & rReadSize);
eCommError read (IMC UINT32 rsize, void * , IMC STRING & , IMC UINT32 & rRead);

Both methods read information out of the communication channel without waiting. When the channel
cannot deliver the amount of data demanded, COMM_LESS DATA is reported. Data is never waited for. The
sender host is noted in the transmitted string IMC_STRING (only with UDP).

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 38

DatalO MAP Chapter 7

eCommError readwithto (IMC UINT32 rsize, wvoid * pDatabuffer, IMC UINT32 &, IMC UINT32
timeout);

eCommError readwithto (IMC UINT32 rsize, wvoid * pDatabuffer, IMC STRING &, IMC UINT32
&, IMC UINT32 timeout);

Two methods for reading using a timeout. Waiting for data takes place for the stipulated period of time. If
insufficient data is received before timeout, COMM_READ_TIMEOUT is reported back. For IMC_STRING
parameter, the same period applies that has been given for the other "read" methods.

eCommError Bufflevel () ;
If the methods for reading from a communication channel encounter insufficient data or are terminated due
to timeout, it is possible to request BuffLevel how much data could already be read.

eCommError write (IMC UINT32 wsize, void * , IMC UINT32 & rWritten);
eCommError write (IMC UINT32 wsize, void * , IMC STRING & , IMC UINT32 & rWritten);

Methods for writing data to a communication channel.
eCommError seek (IMC UINT32 type, IMC INT32 offset);

Controls the specified position in a file. This method cannot be used on ComPorts and sockets.
eCommError f£lush (void) ;

Empties the temporary buffer of the data channel.
CHECK_RESULT check (void) ;

Checks whether reading or writing can be carried out. This eliminates the need to block a reading/writing
operation. Furthermore, blocking a reading/writing operation is not allowed as otherwise the
Application module framework would no longer work correctly.

CHECK RESULT is a data structure reporting on the current state of the communication channel:

typedef struct ({
IMC BOOL readerready;
IMC BOOL writerready;
IMC BOOL except;
eCommError eResult;
}CHECK_RESULT;

eCommError SetChannelPar (const sParamsValue &) ;
Sets the parameters of the communication channel whenever this is necessary following the creation of an
object (e.g. setting an ARP entry in the system). sParamsValue is the ICM_STRING pair that respectively sets
both the parameter as IMC_STRING and the value as IMC_STRING.

Parameters for COM ports:

e bitrate (50-230400 in common steps. As of firmware version (imc DEVICES) 2.8R6 also 14400 and 28800)
bytesize (5,6,7,8)
stopbits(1,2)

parity("none",

even", "odd")

flowcontrol ("none", "crtscts",
Parameters for UDP sockets:

e setarp (IPAdresse:MACAdresse)
e broadcast (on/off)

xonxoff")

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 39

Control Block Chapter 7

7.8 Control Block

For advanced access to hardware resources of the module there is a control block class that can be accessed by
the application.

At present the following functionalities are available:

e FPGA version request
e FPGA variant request

Clock basis request for the output clock generator

Setting the output clock

Activating and deactivating the output signal unit

Control of seven output lines

About methods of overloading:

IMC BOOL getFPGAVersion (IMC UINT16 & Version);
Version request.
IMC BOOL getFPGAVariant (IMC UINT16 & Variant);
Variant request.
IMC BOOL getClockBase (IMC UINT32 & ClockBase);
Clock basis request for the output clock generator
IMC BOOL setCLOCKRate (IMC UINT32 ClockRate);
Setting the output clock synchronously for devices.
IMC BOOL setAPPSIGBit (IMC UINT8 BitNo, IMC BOOL bOn);
Setting an output line (setting follows with the rising edge of the clock).
IMC BOOL enableAPPSIG() ;
Activating the output signal unit
IMC BOOL disableAPPSIG () ;
Deactivating the output signal unit
IMC BOOL selectRS485(IMC UINT8 PortNo, IMC BOOL brs485enable);
Activating RS485 mode of the serial interface. This is only available using an Application module equipped for
RS485.
IMC BOOL enableRS485Sender (IMC UINT8 PortNo, bEnable);
Activation of the RS485 transmission cable.

0 Note

If RS485 is only for reading (RS422), it is not necessary to activate the RS485 module. This is only needed
for sending. In this case only RS232 bit rates will be available.

7.8.1 Using the Output Unit

I A

Clk

If it is intended to use the output unit, the unit must be activated by enableAPPSIG. Only after this has been
done will the clock signal be outputted and the control signal given outside. The signals should be set in advance
in such a way that they assume the idle position; corresponding pullups and pulldowns connected to the lines
must be taken into account.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 40

SSI-Controller Chapter 7

7.9 SSI-Controller

At this time, the SSl-controller is only available on the PBUS_MPC_1 hardware. If the module you obtained has a
different module installed, and you require the SSI-controller, then contact us. There are two SSl-controllers
available (specification SSIPort: 1 or 2).

If the functionality is not available, an error message is returned.

7.9.1 Operation of the SSI-controller

The SSI-controller is operated using the following set of control block methods. When processing is successful,
then APP_SUCCESS is returned.

eAppModError selectSSIController (IMC UINT8 SSIPort);
This switches the SSI-controller to the line drivers. Please observe the notes presented below.
eAppModError deselectSSIController (IMC UINT8 SSIPort);
This disconnects the SSI-controller from the line drivers. This should be done whenever the SSl-controller is
no longer to be used.

eAppModError configSSIController (IMC UINT8 SSIPort,
IMC UINT32 sampling rate, IMC UINTl6 SizeOfSample,
IMC UINT16 ValidBitsOfSample, IMC UINT32 interface clock rate,
IMC SSI CLOCKTYPE SSIMode) ;

This is for configuring the SSI-controller.
With SSIPort, the SSI-Controller is selected.

With Sampling Rate, the rate at which a connected sensor's values is sampled is set. Note that this always
applies to both SSl-controllers and and also that always the last sampling rate set is used.

SizeOfSample specifies the number of bits which are to be retrieved from the connected sensor for each
sampling process.

ValidBitsOfSample specifies the number of valid bits in a sample. This setting's value may only be less than or
equal to SizeOfSample.

Interface Clock Rate sets the bit clock rate at which the sensor is queried.

typedef enum tag IMC_SSI_CLOCKTYPE ({
IMC SSI CLOCK POLO PHASEO = 0x0,
IMC SSI CLOCK POLO PHASEl = 0x1,
IMC SSI CLOCK POL1 PHASEO = 0x2,
IMC SSI CLOCK POLl1 PHASEl = 0x3,
} IMC SSI CLOCKTYPE;

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 41

SSI-Controller Chapter 7

SSIMode specifies when the sensor outputs the data on the data line. See the following table:

$5l-Mode
! ' ' ' I l | | | |
SCK (POL=0, PHA=0) T r M
SCK (POL=0, PHA=1) | |_ |
' ' ' I [| | | | |
SCK (POL=1, PHA=0) | | | | | | | | | |

SCK (POL=1, PHA=1) |

Dataln :><

o e o —— — —
o e | o — —

VALIDBITS

Y
NBRBITS

eAppModError activateSSISender (IMC UINT8 SSIPort);
Here, the SSI-controller is instructed to retrieve samples from a sensor at the interface clock rate. Generally
this is done once upon starting the measurement. Note in this case that no sample is generated at the time
TO. This method can also be called with the SSIPort at 0, in which case both SSI-controllers are instructed
accordingly.

eAppModError deactivateSSISender (IMC UINT8 SSIPort);
With this, the SSlI-controller is instructed to stop polling the sensor. This method only returns once any
sample call in progress has been completed.

eAppModError getSSISamples (IMC UINT8 SSIPort, IMC UINT16 MaxSamples,

IMC_SSI_SAMPLE pSampleArrayl[],
IMC UINT16 & NumberOfSamples);

Polls the sample values accumulated in the SSl-controller.

SSIPort names the SSI-controller to be queried.

MaxSamples specifies how much space is in the SampleArray to be transferred.

pSampleArray transfers an array into which sample values are to be written.

NumberOfSamples is filled with the number of sample values actually read.

If a FIFO-overflow is detected, the reading of the FIFO is interrupted and an APP_MOD_HWFIFO_OVERRUN is
reported. In that case, the NumberOfSamples reflects the number of sample value read up to that time.

7.9.2 Structure of IMC_SSI_SAMPLE

typedef union tag IMC SSI SAMPLE {
IMC_SSI_SAMPLE BLOCK Sample;
IMC_SSI_SAMPLE BUFFER Buffer;
} IMC SSI SAMPLE ;

typedef struct tag IMC SSI SAMPLE BLOCK {
IMC UINT16 DateBlock;
IMC UINT32 TimeBlock;
IMC _UINT32 TenNanoSeconds;
IMC UINT32 Sample;
} GNUC_PACKED2 IMC SSI SAMPLE BLOCK;

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 42

SSI-Controller Chapter 7

DateBlock and TimeBlock are BCD-encoded
o Example

DateBlock(Year,Month): 0x1404,
TimeBlock(Day,Hour,Minute,Second): 0x28112213)

The application itself must mask the "invalid" bits of a sample; the SSI-controller does not handle this.

7.9.3 Note on initialization

Due to the activation of the SSI-controller, the following sequence in the initialization must be adhered to.
Please also note that a part of the RS485 methods must be used.

CAppMod CB & rCB = getAppModCB() ;

rCB.configSSIController (1,20,9,7,500000,IMC SSI_CLOCK POLl PHASEL);
rCB.selectRS485 (1, true) ;

rCB.enableRS485Sender (1, true) ;

rCB.enableRS485FullDuplex (1, true) ;

rCB.selectSSIController (1) ;

0 Note

e |t is important for selectSSIControler to be called last.

o |f the terminator function present in the output driver is to be used, then the enableRS485Terminator
method is to be called as described above.

7.10 Module Parameter

As a principle, module parameters of the application are organized into groups. For the reading of a module
parameter by the framework, a reference to the generic data type "node" is first created by the framework
method.

"GetModulParam(IMC_STRING& sGroupName, IMC_STRING& sParamName)" and objParameter& objParamKey
= *pNode). Once this has been done, the value of the module parameter can be read. A corresponding cast
operation is carried out by the assignment operator (e.g. if an appropriate cast operator can't be assigned, an
exception is triggered; bad cast).

See the example below for a module parameter within the parameter group "IENNA" with the name "Key" and
the data type "IMC_UINT16".

o Example Module parameter

IMC_STRING sGroup ("IENA");
IMC_STRING sParam("Key");
Node * pNode = GetModulParam (sGroup, sParam);
if (NULL == pNode) {
TRACE (
"TENASendl2App: :OnNewConfiguration () : GetModulParam() failed to fetch <Key>\n"
)i
break;
}
objParameter& objParamKey = *pNode;
IMC UINT16 m IENA Key = 0;
try {
m_IENA Key = objParamKey;
} catch (int err) {
// bad cast ..
}

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 43

Module Parameter Chapter 7

Special case — vector and matrix parameter: Example of a matrix consisting of string values

J Example Matrix

IMC STRING sGroup ("IENA");

IMC STRING sParam("szMatrixTest ");

Node* pNode = GetModulParam (sGroup, sParam);
objParameter& ObjParam szMatrixTest
unsigned int rows
unsigned int cols

pNode;
ObjParam szMatrixTest.getDimArrayFirst();
ObjParam szMatrixTest.getDimArraySec();

for (; idxRow < rows; idxRow++) {
unsigned int idxCol = 0;
for (; idxCol < cols; idxCol++) {

const char *szValue = (const char *)ObjParam szMatrixTest[idxRow] [idxCol];
}

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 44

Chapter 8

8 Debug connector

For the output of debug messages from an application, a small 3.5mm jack socket is mounted on the front panel

of the Application module. This is connected to a COM port of the PC via a suitable cable (also a USB serial
adapter can be used).

By means of a terminal emulator (e. g. Putty), which is set to 115200bps, 8N1, flow control switched off (neither
RTS/CTS nor XON/XOFF), the outputs can then be viewed.

If such a line is not available, it can be made according to the following diagram:

wired to female DSUB-9
Pin 5 -> Ground
Pin 2 -> Tx
Pin 3 -> Tx

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 45

Chapter 9

9 Tutorial

This tutorial presents the procedure for creating an application using the Application module.

A new application is created on the base of a template. In this example, the conversion of a Celsius
measurement to Kelvin is demonstrated.

9.1 Installation

Install the development environment according to these Instructions (o).

0 Note

For English-language operating systems, you must use an installation folder path which does not contain
any spaces.

9.2 Opening Projects in Eclipse

e Copy the sample models in your Eclipse workspace

The sample models are found in the folder where you previously installed "imcAppModDevSetup| s ".

Start Eclipse

Deactivate "Build Automatically". See also here 16,

Insert the sample projects into your Eclipse workspace.
e To do this, use the Import function -> "Existing Projects into Workspace" and select your workspace

& Import |:|®

Select
N \d
Create new projects From an archive file or direckory. l E 5 l

Select an import source:

|I:':.:'|:|e filker bext |

== =eneral
@; frchive File
Existing Projects inka W
|:|‘ File System
L Preferences
= o+
= Cvs
[= Plug-in Development
= RunDebug
(= SWN
[= Tasks
[= Team
= xML

orkspace

®

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 46

Adapting the Template Path Chapter 9

9.3 Adapting the Template Path

e Under Template, open the file "build.properties"
e Adapt the paths for the objects highlighted in red in accordance with your installation:

& CIC++ - Template/build. properties - Eclipse Platform

File Edit Refactor Mavigate Search Run Field Assist Project Window Help

M- @ g drE /-8 B0 @ Y 0D
&3

rijrDject Explorer = @n build. properties 23
=5 Celzkel |
125 Displayapp BEGHE R H BRGNS H R SRR R SR E GRS B R H
IDC-IENASendIZ.ﬁ.pp # Dieze Variable mub angepasst werdeh, wenh eine Installation
IDCKeriMatF'.pp # in ein anderes Verzeichnis vorgenormen worden ist, als
EI'[DCTempIate # == Standardyverzeichnis: HRR R (AW N (e ek a) i (1=
(= model imcAippModdir
Esrc HE AR R R R R R B A A SRS
@n build. properties
B build, e lant dir = C:/Programme/ Ancl
ant pro = f{ant dir!/bin/imc ant.bat
I SV prdg = C:fPrDurammeiSubversion:bin:svn.exeI
nmake prog = f{mavse dir}/ViC93/Bin/lmake.exe
| cmake pro = C:/Programme/crossgec/bhin/wake.exe ||

#rorosstools

crossgoc.path = C:/Programme, crossgoc
CrosSsSgoc.Cygwin = §j{crossgcc.pathl bin

HinrnMadTonl=

Once call paths have been corrected, you can build the template. To do this, click on the hammer icon:

& CIC++ - Eclipse Platform

File Edit Refactor Mavigate Search Run Field Assist Project Window Help

e - @é@*ﬁ*ﬁ*@*@*éﬁ*ﬁv%*é
= =0

[Project Explorer 53 = <u1=*'=f> _
=125 Celzkel
=@ AppMod_include
= model
[= src] o
@ e [Q_L, Problems | «=| Tasks B onso

i i C-Build [Celzkel]
C ?E build. xmi Leleting directory C:
= Displavapp

(=5 IEMASend1Zapp Deleting: C:%Workspace
=% KelviMatapp Deleting: C:hWorkspace
== Template Deleting: C:\Workspace

Deleting: C:%Workspace

BUILD 3UCCEI3IFUL

otal Cinme: U seconds

:4} @ build. properties - Celzkel

e If the build was successful, the message "BUILD SUCCESFUL" appears in the Eclipse console.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 47

Renaming the Template for our Project Chapter 9

9.4 Renaming the Template for our Project

& C/C++ - Eclipse Platform e Copy the "Template" project in Eclipse and rename it to "Cel2Kel".

e Rename the following project files in the project Cel2Kel:
Template.mpdcl -> cel2kel.mpdcl

Template.pcdcl -> cel2kel.pcdcl

Template.ccpl -> cel2kel.ccp

Template.h -> cel2kel.h

File Edit Refackor Mavigate Sea
N il s P Ef T 6
[Project Explarer 52 =

=25 Celzkel
[= = model
=R -clzkel. mpdel
|=| celzkel. pcdcl
== src
@ celzkel. cpp
[celzkel.h
@ dbgswitches.h
@ bild, properties
&1 build. xml
= Displavapp
== [ENASend1ZApp
= KelviMatapp
=== Template
== model
\=| Template,mpdcl

|=| Templakte,pcdcl
[=)[= src
@ dbagswitches. b
@ kemplate.cpp
@ kemplate.h
@ build. properties

B build, sl

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 48

Renaming the Template for our Project Chapter 9

e Change the red shaded entry in the file build.xml to Cel2Kel

& CIC++ - CelZKel/build.>aml - Eclipse Platform

File Edit FRefackor MNavigate Search Run Field Assisk Project Window Help

G i E e G R B0 @S [P A
Py

r[i‘pProject Explarer = -}Ebuild.xml &3
=% Celzkel 1 <?xml swersion="1.0"72:>
@ AppMod_include Zogproject name="DEMO User Module™ basedir=".":
(== miodel 3
= celzkel mpdel 4 <taskdef resource="ImcTasks.propertises”™ />
= cel2kel podel 5 <taskdef resource="cpptasks.tasks" >
(== src 3 <typedef resource="cpptasks.types™ f»
@ celzkel. cpp 7
@ celzkel b =] <property file="huild.propertiess"™ />
@ dbgswitches.h a <property name="ipc sdk" walues=".." />
@ build. properties 10 <property name="debug" wvalue="false" />
B bt el 11
I@CDisplav.ﬁ.pp 12 <l—— get Namwe of Module —->
Ir_i/:' IENASendl Zapp 13 <property na.me="HDduleNa.me"Ivalue="Ce12Kel".ﬂ’> I
=5 KelviMatapp 14
= Termplate 15
1la «!-—- Zentrale Ziele —-->
17= <target nsane = "all"-> <l== <depends="A4l
15= <condition property="objpach® wvalue="debug" e!
12 <iztrue walue="§{debugl "/ >
20 </condition>
21 <echo message="all: Debugpath=3{ochipath} />
22 <antecall target="APPMOD (IBUS_3)'"/>

e Ersetzen Sie in der Datei cel2kel.cpp alle "Template" Eintrage (sowohl "#include", Klassen und aufrufe)
durch "cel2kel"

& CIC++ - Cel2Kel/src/celZkel.h - Eclipse Platform

File Edit Refactor Mavigate Search Run Field Assist Project Window Help

-l o @& /-8 iH-0-Q- @5 4
o

|.—|>:|F‘raject Explarer =l <}==='> & ¥ =0 @ celzkel cpp @ template.cpp EI e
S-S Celzkel 1/%
[AppMod_include Z * pelikel.h
=== model oW
=] celzkel.mpdc| 4 % Created on: 31.07.2009
= celzkel.pcddl 5 % huthor: jung
== sro 6
@ celzkel.cpp b
[h] celzkel b S#ifndef CELZKEL H
@ dhgswitches.h S#define CELZKEL H_
@ build. properties —
-}E build. il ? lifinclude "imcdefs. h"
1= Displavdpp iz
= IEMASendlZApp ? 13f#include "cappmod.h"
= KelviMatapp ? l4ffinclude "appmodpin if.h"
== Template 15
== model ? lefinclude <iostreamn:
= Template, mpdcl 17
= Template.pcdel 18
== st 19
@ dhgswitches.h 20
@ template.cpp 21/%
@ ternplate.h 22 * Die Elasse der Lpplikat
@l build, properties 23 * gie ist der Kontainer i
-‘,@ build, zml 24 * Werden neben den Uherlss
L = L T e e L e ek sl
© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 49

Renaming the Template for our Project Chapter 9

e Wenn die Umbenennung erfolgreich war, kdnnen Sie das Projekt kompilieren. Klicken Sie hierfur auf das
Hammersymbol.
e Wenn der Bau erfolgreich war, erscheint in der Eclipse Konsole die Nachricht "BUILD SUCCESFUL"

& C/C++ - Eclipse Platform

File Edit Refactor Mavigate Search Run Field Assist Project ‘Window Help

il Wi - /- B - Q- B 2 |
rijroject Explorer 3 =]
E=5 Celekel
@ AppMod_include
= model
= src
@ build, properties
& buid .l

=5 DisplayApp =
[] n A
= IENASend1 ZApp [QA Problems | += Tasks El Console 2 = Properties

IDC KelviMatF\pp EJ_B']I.ildtIECEQKe!Z]i t (SRl Kk hoeliKe Ly A cl 1100
eletln 1rector H oOrKspace (=] = o
5 Template 5 v r bp -

Deleting: C:%Workspace'CelZEelmodelyCelZEel.pof

Deleting: C:\WorkspaceiCelZEelimodel\CelZEel.amp

Deleting: C:\WorkspacehCelZEelimodelyCelZEel.amps

Deleting: C:\WorkspacehCelZEelhModulConfig-CelZKel.appmod. zip

EUILD SUCCEISFUL
ota 1me: seconds

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 50

Realizing our Project Chapter 9

9.5 Realizing our Project

e Add a new "Link" folder to the project. Apply the settings shown in the image below:

& New Folder |:|®

Folder —

1%, Location i /
"CiProgrammelimciime_DEVICES 2. FRIimcAppiodiinclude’ may

Enter or select the parent Folder:

| Template/dppMod_include |

=5 Calzkel
= Displayvapp
== IENASend1Z2app
= KelviMatapp
=== Template
[AppMod_include
(= model
[= src

Folder name: | AppMod_include

Link ko folder in the file syskem

I CAProgrammehimctime_DEYICES 2, FR3Nmcs | Browse, .,] [Yariables, ..]

':':’:' [Einish H Zancel]

e Step 1: Adding functions

e Shaded red: Select the installation folder for "imcAppModDevSetup", including "...
\imcAppMod\include".

e By means of this link, you have access to finished functions and definitions of variables.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 51

Realizing our Project Chapter 9

e Step 2: Defining Inputs/Outputs (cel2kel.pcdcl)

o In the file cel2kel.pcdcl, two channels are defined.

IMC AppMod Ein Ausgabe Deklarationen

Kommentar

; Kommentar

; Schliisselworte beachten GroR und Kleisnchreibung nicht.
; Werte werden mit GroBl und Kleinschreibung unterstiitzt

Pin Name="ToBeSampled" IOType="Source" PinType=PVVar
Name="pv.Kanal 00 01"
ValueType="INT16"
unit=" Cc"

End

Pin Name="Temperatur Out" IOType="Sink" PinType=Channel
Name="Out"
ValueType="Float"
idsampletime=15
inputmode="SAMPLED"
atoriginal=false
isuint=false
unit=" K"
yscalefactor=1
yscaletype=1
yoffset=0
yminvalue=-1000
ymaxvalue=1000
yreflvalue=-1
yref2value=40

End

e Step 3: Tunable Parameter (cel2kel.mpdcl)

o In the file cel2kel.mpdcl, a tunable parameter is generated.
[input]
IMC IEEE FLOAT ReFactor = 273.0
e Step 4: Definition of pointers and auxiliary variables (cel2kel.h)

o In the file cel2kel.h changes were made in the Local Variables area.

#ifndef CEL2KEL_H_
#define CEL2KEL_H

#include "imcdefs.h"
#include "cappmod.h"
#include "appmodpin if.h"
#include <iostream>

/*

* Die Klasse der Applikation als Ableitung der CAppMod.

* Sie ist der Container in dem die Applikation angelegt wird.

* Werden neben den Uberladenen Methoden weitere implementiert, so sollten diese

* als privat gekennzeichnet werden.

* Das Framework ruft nur die Methoden auf, die in der Basisklasse (CAppMod) bereits
* derklariert worden sind.

* Flir den GroBteil der Methoden bestehen in der Basisklasse Methodenrimpfe, die den
* normalen Ablauf mit dem Gerat sicherstellen.

*

/

class Cel2Kel : public CAppMod

{

public:

/*
* Diese dienen zur Uberpriifung der Kompatibilit&t und Integritat
* eines Moduls zur Laufzeit

*/

IMC UINT32 GetModuleMagic(void) {return MODULEMAGIC;};
IMC UINT32 GetModuleVersion (void) {return MODVERSION; };

/*
* Destruktor
*/
virtual ~Cel2Kel();
/*

* Dieser Konstruktor wird nach der Registrierung der Applikationsklasse
* (siehe" register" Klasse) aufgerufen und tbermittelt den Zugriff auf den IDMAN.
* Sie sollte gegebenenfalls Membervariablen initialisieren. (Bsp template.c)

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 52

Realizing our Project Chapter 9
Cel2Kel () ;
/*
* Liefert dem Framework den Namen der Applikation. Dieser ist nicht zu
* verwechseln mit einem Dateinamen.
*/
virtual IMC STRING GetApplicationName () ;
/*
* Diese Methode dient der Instantiierung der Applikation durch das Framework
* (Sie ist so wie in template.c gezeigt zu implementieren).
*/
static CAppMod * ModCreate () ;
/*
* Wird zur allgemeinen Initialisierung durch das Framework aufgerufen.
* Sie wird jedoch nur einmal zur Laufzeit aufgerufen. Sie wird nur nach
* dem Starten bei der ersten Messvorbereitung bei Verwendung der Applikation
* aufgerufen.
*/
eAppModError OnInit (void);
/*
* Wird aufgerufen, wenn die Applikation beendet werden soll.
*/
eAppModError OnExit (void) ;
/*
* Diese Methode wird aufgerufen, wenn eine neue Konfiguration verarbeitet
* worden ist. In dieser Methode kann nun die PinKonfiguration auslesen.
* Die eigenen Datenstrukturen werden entsprechend eingerichtet.
* (z.B. iUbertragen in eigene "Arrays" oder "Variablen")
*/
virtual eAppModError OnNewConfiguration (void);
/*
Bevor eine Konfiguration verarbeitet wird, wird die alte Konfiguration geldscht.
* Dabei wird OnClearConfiguration vom Framework aufgerufen.
* Diese kann mehrfach aufgerufen werden.
*/
virtual eAppModError OnClearConfiguration (void) ;
/*
* OnNewDataPoll wird kontinuierlich durch das Framework aufgerufen. Allerdings ist
* keine feste zeitliche Regel vorhanden.
* Die Methode darf keine Wartezyklen beinhalten
*/
void OnNewDataPoll (const CAppModTimerTick & TimeTick);
/*
OnSamplingTimer wird durch das Framework aufgerufen,
* wenn das Zeitintervall, das mit AddSamplingTimer angemeldet worden ist,
abgelaufen ist.
*/
void OnSamplingTimer (void * pObject, const CAppModTimerTick & Tick);
/*
* Das Framework wird die folgenden Methoden aufrufen, wenn auf einem der
* konfigurierten Kandle ein Trigger gemeldet worden ist
*/
eAppModError OnStartTriggerDetected (int TriggerNo) ;
///< called on StartTrigger
eAppModError OnStopTriggerDetected(int TriggerNo, IMC BOOL GlobalState);
///< called in StopTrigger
void OnTimerStarted();
/*
* OnTimerStarted meldet den Start der Messung
*/
private:
/*
* Lokale Variablen
*/
bool m first;
/* -
* Referenz zu der PinTabelle (Pin["NAME"])
*/
APP PIN MAP * m pPinMap;
/* - - -
© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08

Page 53

Realizing our Project Chapter 9

* Verweise auf spezielle "PIN"'s

*/

CAppModPin * m pToBeSampled; /* PVVar ToBeSampled */
IMC_BOOL m_ToBeSampled Triggered;

/* Vermerkt Triggerstatus des ToBeSampled Kanals */
CAppModPin * m_pTemperatur Out;
IMC BOOL m ToTemperatur Out Triggered;
CAppModPin * m pDevice; /* Verweis auf einen Datein Ein/Ausgabe Kanal */
PAPP_CHANNEL m papc;

Die "* register" Klasse dient der Registrierung der Appkikationsklasse beim Framework.
* Ohne diese kann das Framework die Applikation nicht aufrufen.
* Es 1st notwendig eine globale Instanz der " register" Klasse anzulegen.
(siehe template.cpp)
*
/

class Cel2Kel register
{
public:
Cel2Kel register () {
CAppMod: :RegisterAppMod (Cel2Kel: :ModCreate) ;
#ifdef DEBUG
std::cerr << std::endl << "Cel2Kel register(): Registered Cel2Kel" << std::endl /
<< std::endl ;
#endif

}
~Cel2Kel register(){};
private:
Cel2Kel register(Cel2Kel register &); // NoImpl
Cel2Kel register & operator= (Cel2Kel register &); // NoImpl
bi

#endif /* CEL2KEL H */
e Step 5: Add functionality (cel2kel.cpp)
e Adopt the following changes

#include "ccommtypes.h"
#include "ccommcom.h"
#include "cel2kel.h"
#include <iostream>

/*

Die folgende Deklaration registriert die Applikation beim Framework.
* Die Definition der " register"-Klasse und die Bekanntmachung
* ist zwingend erforderlich.

*/
Cel2Kel register JustToReg;
/*
* Konstruktor der Applikation
*/
Cel2Kel::Cel2Kel () :
CAppMod ()
{
}
/*
* Dient dem Framework als Relaismedhode
*/

CAppMod * Cel2Kel::ModCreate ()

{
return new Cel2Kel () ;

}

/*
* Destruktor
*/

Cel2Kel::~Cel2Kel ()
{
}

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 54

Realizing our Project Chapter 9

IMC STRING Cel2Kel::GetApplicationName ()
{
IMC_STRING Cel2Kel = "Cel2Kel";
return Cel2Kel;
}

/*
* Wird durch das Framework bei Applikationsstart aufgerufen.
*/

CAppMod: :eAppModError Cel2Kel::0OnInit ()

{
std::cerr << "Cel2Kel::OnInit ()" << std::endl;
m pPinMap = GetPinMap () ;
return APP_SUCCESS;

}

/*
* Wird durch das Framework aufgerufen, wenn die Applikation beendet wird.

*/

CAppMod: :eAppModError Cel2Kel::OnExit ()

{
std::cerr << "Cel2Kel::0OnExit ()" << std::endl;
return APP_SUCCESS;

}

/*
* Wird durch das Framework aufgerufen, wenn die Konfiguration verarbeitet wurde
* und anschlieRend durch die Applikation ausgewertet werden kann.

*/
CAppMod: :eAppModError Cel2Kel::0OnNewConfiguration (void)
{
eAppModError eRes = APP BAD CFG;
std::cerr << "Cel2Kel::OnNewConfiguration()" << std::endl;
// clean and reset pin handle of Channel ToBeSampled

m_pToBeSampled = NULL;
m_pTemperatur Out = NULL;
m_first= true;

try{
do{
APP PIN MAP::iterator it;
APP_PIN MAP & Map = * (m pPinMap); // reference to PinMap.
/*
* Rufe PIN "ToBeSampled" aus der PIN Map ab.
*/
it = Map.find("Temperatur Out");
if (Map.end()== it)
break;
/*
* Referenz speichern und Status initialisieren.
*/
m_pTemperatur Out = it->second;
m_ToTemperatur Out Triggered = IMC_FALSE;

it = Map.find("ToBeSampled");
if (Map.end()== it)
break;
/*
* Referenz speichern und Status initialisieren.
*/
m pToBeSampled = it->second;
m_ToBeSampled Triggered = IMC_FALSE;
/*
* Hier wird die Abtastzeit abgerufen.
*/
APP_CHANNEL * papc;
m_pTemperatur Out->GetResource (papc) ;
m_pTemperatur Out->GetResource (m_papc) ;
CAppModTimerTick PaiSamplingTimeinterval ((IMC UINT16) /*papc->XAxes.iIdSampleTime*/
15);

AddSamplingTimer (PaiSamplingTimeinterval, (void *) 1);
eRes = APP SUCCESS;

}while (false);

}catch (...){
eRes = APP BAD CFG;

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 55

Realizing our Project Chapter 9

}

return eRes;

}

CAppMod: :eAppModError Cel2Kel::0OnClearConfiguration (void)
{
char sCmd[128];
IMC INT32 wsize;
PCComm pComPort;
std::cerr << "Cel2Kel::0OnClearConfiguration ()" << std::endl;
// clean and reset pin handle of Channel A0
m_pToBeSampled = NULL;
m_pTemperatur Out = NULL;
m_papc = NULL;
return APP_SUCCESS;
}

/*
* Beil Messstart zeigt diese Methode den Beginn.

* Hier im Cel2Kel ist bereits durch das Framework alles erledigt worden.
*/

void Cel2Kel::OnTimerStarted ()
{

}
/*

* Diese Methode wird standig aufgerufen. Mindestens ein Mal pro Abtastintervall.

*/

void Cel2Kel::OnNewDataPoll (const CAppModTimerTick & Tick)
{
if(m first){
IMC IEEE FLOAT fl16In = (IMC_IEEE FLOAT) m pToBeSampled->readIntl6() * m papc-—
>YAxes.dScaleFactor + m papc->YAxes.dOffset;
printf("fl16In: $f\n", f16In);

f16In =f16In*0.06199+ 273;
printf ("f16In: %$f\n", f16In);

const CAppModTimerTick DummyTick;
m pTemperatur Out->writeFloat (DummyTick, £16In);
m first=false;

* Wird aufgerufen, damit die Applikation die Gelegenheit hat,

* bei Ausldsung eines Starttriggers Arbeiten zu erledigen, die in

* solchen Fallen zu erledigen sind (z.B. Meldungen an angeschlossene
Gerate zu senden).

CAppMod: :eAppModError Cel2Kel::0OnStartTriggerDetected (int TriggerNo)
{

return APP SUCCESS;
}

* Wird aufgerufen, damit die Applikation die Gelegenheit hat,

* bei Ausldsung eines Stoptriggers Arbeiten zu erledigen, die in

* solchen Fallen zu erledigen sind (z.B. Meldungen an angeschlossene
Gerate zu senden).

CAppMod: :eAppModError Cel2Kel::0OnStopTriggerDetected(int TriggerNo, IMC BOOL GlobalState)
{

return APP SUCCESS;
}

/*
* Wird fir jedes angemeldete Abtastintervall aufgerufen.
*/
void Cel2Kel::OnSamplingTimer (void * pObject, const CAppModTimerTick & Tick)
{
IMC UINT32 hash = (IMC_UINT32) pObject; // on Cel2Kel this is just a 32bit integer.

/* wie eine identifizierung der Abtastzeitintervalle geschieht, liegt
* bei der Applikation. Ein weg ware, einen Hashwert zu speicher.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 56

Realizing our Project Chapter 9

* Eine andere Variante wire, der Registrierung einen INDEX in eine
* Tabelle zu verwenden.
* Entscheident ist dabei lediglich, dass die verwendeten Werte
* eindeutig sind.
*/
if (1 == hash){

IMC IEEE FLOAT f16In = (IMC IEEE FLOAT) m pToBeSampled->readIntl6() * m papc-
>YAxes.dScaleFactor + m_papc->YAxes.dOffset;
printf ("fl16In: %f\n", f16In); // <- Debug Ausgabe

£16In =£f16In*0.06199+ 273; // <- Umrechung
printf("fl16In: $f\n", f16In); // <- Debug Ausgabe

const CAppModTimerTick DummyTick;
m_pTemperatur Out->writeFloat (DummyTick, £16In); // <- Ausgabe Kanal

}

e Step 6: Compile:
e Once all changes to the project have been made, compile the project by clicking on the hammer symbol.

& CIC++ - Eclipse Platform

File Edit Refactor Mavigate Search Run Field Assist Project Window Help

i Big-e-E-e- {8 p-0-a-
P

& & v =g

'y |

|._|>_‘| Project Explorer

=125 Celzkel
@ AppMaod_include
=== model

== src 3 L
@ il s v [Q_\ Problems |+ Tasks E canso

§ . C-Build [CelzKel]
. i8] buid xl Deleting HiFectory Cr)
1= Displavapp

e Deleting: C:%Workspace
= IEMASend1Z4pp

< el Deleting: C:hWorkspace
s
CKEWTamDD Deleting: C:hWorkspace
=

Template Deleting: C:hWorkspace

BUILD SOCCEISFUL

otal time: U seconds

g |.;_'_Tl build. properties - Celzkel

0 Note

If you changed the Standard Software (imc STUDIO) on which the operation of your project is based, the
project must be re-compiled. This is absolutely necessary when upgrading to a higher revision number, e.g.
imc STUDIO 5.0R1 to 5.0R3.

9.6 Expanding the Project

Up to now, only the tunable parameter has been defined. In the next step, an offset control could be achieved.

© 2022 imc Test & Measurement GmbH imc Application Module - Manual, Edition 11 - 2022-07-08
Page 57

Chapter 10

10 Technical Specs - imc APPMOD

Embedded Processor

Parameter

Value

Remarks

Embedded processor

Freescale Power PC MPC5200B

Core CLK 384 MHz

RAM 64 MB total memory
48 MB available for the application
Flash 16 MB only for the operation system
Operating system Linux
General
Parameter Value Remarks
Interfaces 1x Ethernet interface and Specific applications can each use exactly
1x serial interface one of the two interfaces. Simultaneous
use of both interfaces requires a system
with two interfaces.
3.5 mm jack plug service-jack
(RS232, 115 kBaud, Tx, Rx, GND)
console for development, debugging
Module width requires 1 slot fixed installation, ex factory
Modularity order option upon request
Max. amount of interfaces 3 totally in one CRFX base unit
in one system 8 totally in one CRC system
1 totally in one BUSFX-4 system
2 totally in one BUSFX-6 system
3 totally in one BUSFX-8 system
5 totally in one BUSFX-12 system
Ethernet Variant
Parameter Value Remarks
Terminals / Nodes 1
Terminal connectors 1x RJ45
Topology bus
Transfer protocol TCP/IP IEEE Norm 802.3
Transfer medium Ethernet

Data flow direction

sending/receiving

Baud rate 100 MBIt 100BaseT (Half- and Full-duplex)
10 MBIt 10BaseT (Half- and Full-duplex)
Auto-sensing
Isolation strength 60V to system ground (CHASSIS)

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08

Page 58

Chapter 10

Serial interface variant

Parameter Value Remarks
Terminals / Nodes 1
Terminal connectors 1x DSUB-9

Baud rate 300, 1200, 2400, 4800, 9600,
14400, 19200, 28800, special bit-rates: 14400 and 28800
38400, 57600, 115200, 230400

Isolation galvanically isolated to system ground (CHASSIS)

Isolation strength 60V nominal working voltage
Operation modes RS 232 flexibly configurable: multi-protocol

RS 485 / RS 422 transceiver
RS232 mode
Parameter Value Remarks
Topology point-to-point
Transfer protocol RS232
Signal type Tx, Rx, GND Basis signals
CTS, RTS Handshake, flow control

Data flow direction

sending/receiving

Byte format 7 or 8 data bits, 1 or 2 stop bits,
none/odd/even parity
Flow control XON/XOFF, RTS/CTS
RS485/422 mode
Topology Bus
Transfer protocol RS485 compatible to RS422

Operating mode

Half- and Full-duplex

activated via software

Signal type

2x Tx, 2x Rx, GND

basis signals, differential

Data flow direction

sending/receiving

Termination

120 Q

activated via software

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08

Page 59

Chapter 11

11 Pin configuration

RS 232 RS 422 / RS 485 Full-Duplex
Signal PIN Signal PIN
n.c. 1 Rx+ 2
RX 2 Rx- 8
X 3 TX+ 3
n.c. 4 Tx- 7
DG 5
n.c. 6
RTS 7
CTS 8
n.c. 9

CHASSIS
RS232 A
5
DG }7—0
I
4 1o
cTs B o
T* 3 o
RTS 7 o
RX 2 o
3 -
1
|)
s
=

Service-interface jack plug 3,5mm

(RS232, 115 kBaud, Tx, Rx, GND)

RS 485 Half-Duplex

Signal PIN
+D 3
-D 7

Signal DSUB9 Pin jack plug 3,5 mm
RX 2 TIP (L)
X 3 RING (R)
GND 5 Shield

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08

Page 60

Index

Index

A

Application archive Application module

Definition 7

Application module
Application archive 7
Assistant 12
Channel 14
Configuration possibilities 13
Display variable 14
Module configuration 13
Processvector 14
Serial interface (ComPort) 13

TCP 13
ubp 13
Appmod

Debug connector 45
Assistant 12

C

CE Certification 5
Certificates 5

Change requests 4
Channel 14

Configuration possibilities 13
Customer Support 4

D

Debug connector Appmod 45
DIN-EN-ISO-9001 5
Display variable 14

G

General terms and conditions 5
Guarantee 5

H

Hotline 4

Installation guide
Development environment 9

ISO-9001 5

J

jack plug 3,5 mm
Pin configuration 60

L

Liability restrictions 5

Limited Warranty 5
Load configuration 12

M

Module configuration 13
Module Configuration possibilities

P

Pin configuration 19

RS232 60
RS 422 60
RS 485 60

Processvector 14
Product improvement 4

Q

Quality Management 5

R

RS 232, 422, 485
Pin configuration 60

S

Serial interface (ComPort) 13
Service: Hotline 4

T

TCP 13
Telephone numbers: Hotline 4
Tunable Parameter 23

U

UbpP 13

W

Warranty 5

13

© 2022 imc Test & Measurement GmbH

imc Application Module - Manual, Edition 11 - 2022-07-08

Page 61

	Table of Contents
	1 General introduction
	1.1 Before you start
	1.2 imc Customer Support / Hotline
	1.3 Legal notices

	2 imc Application Module
	3 Functioning
	4 Workflow
	5 Setting Up
	5.1 Prerequisites
	5.2 Installation Guide: Development Environment
	5.3 Setting up the development environment and adding the Demo Apps

	6 imc Application Module Assistant
	6.1 Assistant in imc STUDIO
	6.1.1 Loading a Applikation
	6.1.2 Editing the Module Configuration

	6.2 Module Configuration
	6.2.1 Configuration Possibilities
	6.2.2 Entries

	7 Quick Guide: Developing an imc Application Module
	7.1 Pin Configuration
	7.1.1 Declaration of the Pin Configuration

	7.2 Sampling Types
	7.3 Module Parameters
	7.3.1 Function of the Module Parameters
	7.3.2 Declaration of the Module Parameters
	7.3.3 Declaration of the General Module Parameters
	7.3.4 Declaration of the DataIO Module Parameters

	7.4 Setup of an imc Application Module/Application
	7.4.1 Register Class
	7.4.2 The Class CAppMod
	7.4.3 Status Return of Methods

	7.5 Flowchart of an Application
	7.5.1 CAppMod Class Methods

	7.6 Pin MAP
	7.7 DataIO MAP
	7.7.1 DataIO Class (CCom)
	7.7.2 Description of the CCom Class Methods

	7.8 Control Block
	7.8.1 Using the Output Unit

	7.9 SSI-Controller
	7.9.1 Operation of the SSI-controller
	7.9.2 Structure of IMC_SSI_SAMPLE
	7.9.3 Note on initialization

	7.10 Module Parameter

	8 Debug connector
	9 Tutorial
	9.1 Installation
	9.2 Opening Projects in Eclipse
	9.3 Adapting the Template Path
	9.4 Renaming the Template for our Project
	9.5 Realizing our Project
	9.6 Expanding the Project

	10 Technical Specs - imc APPMOD
	11 Pin configuration
	Index

